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34.1 Abstract 
 

 

Metabolism of amino acids is better known in nematodes than in other helminths, particularly 

in parasites of mammals and humans. There are differences between species and also life-cycle 

stages, so that the presence of genes encoding the proteins does not ensure functional enzymes, 

e.g. there are differences in expression of glutamate synthase, arginine decarboxylase and 1-

piperideine-carboxylate reductase between the two closely related  species or life-cycle stages 

of sheep abomasal nematode parasites. The main differences in metabolism of amino acids 

from that in other animals are in properties of individual enzymes, rather than the absence or 

presence of pathways. Unusual features are the lack a full ornithine-urea cycle in many 

helminths, the presence of creatinase activity, synthesis of polyamines from either ornithine or 

agmatine and incorporation of ammonia into glutamate.  
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34.2 Introduction 
 

Cestodes (tapeworms) of the Phylum Cestoda, trematodes (flukes and schistosomes) of the 

phylum Platyhelminthes and roundworms of the phylum Nematoda, although anatomically 

very different, are generally grouped as helminths. All cestodes are parasitic, whereas there are 

both parasitic and free-living species of trematodes and nematodes. Trematodes have both an 

absorptive tegument and an incomplete gut (Asch and Read, 1975; Hanna, 1980; Pappas, 

1988), whereas nematodes have digestive tracts and absorption occurs across their outer 

cuticles, which are structurally unlike typical absorptive surfaces (Bird and Bird, 1981; Page, 

2001), except in a few species in which there are microvilli on the cuticle (Riding, 1970). Adult 

cestodes consist of a head (the scolex) and segmental proglottids generated by the scolex, which 

mature as they move distally as new proglottids are formed and break off at the posterior end. 

As there is no digestive tract, absorption occurs only across the tegument, which resembles a 

brush border (Pappas et al., 1973).  

 

 

34.3 Overview 
 

Since the extensive reviews of helminth nitrogen metabolism of McManus (1987) and Barrett 

(1981, 1983, 1991), most work has been carried out on parasitic nematodes, with a focus on 
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identifying novel anthelmintic targets. Biochemical studies, supplemented with annotated gene 

sequences in public databases, of a limited range of species has resulted in only a partial picture 

of amino acid metabolism in helminths. Further, even closely related species have shown 

notable differences in enzyme properties and there are examples of enzymes not being 

expressed at some life-cycle stages.  

 

Proteolytic enzymes on the intestinal brush border and/or secreted by many parasitic nematodes 

of plants (Vanholme et al., 2004) and animals (Sajid and McKerrow, 2002) break proteins to 

peptides and amino acids. Uptake of nitrogenous compounds in helminths can be as 

ammonium, peptides (Meissner et al., 2004) and amino acids (Isseroff et al., 1976; Jeffs and 

Arme, 1985, 1987; Veljkovic et al., 2004) and also through the γ-glutamyl cycle (Dass and 

Donahue, 1986; Abidi and Nizami, 1995). Excess nitrogen is excreted by free living and 

parasitic nematodes as approximately 80% ammonia and 20% urea (Rogers, 1952; Wright, 

1975a; Simpson et al., 2009). 

 

Amino acids are commonly oxidised (Grantham and Barrett; 1986a; Umair et al., 2011c, 

2012a) or decarboxylated (Singh et al., 1983; Umair et al., 2011d) by nematodes and helminth 

aminotransferases are able to transaminate a large number of L-amino acids, usually using the 

glutamate - 2-oxoglutarate (2-OG) system (Singh and Srivastava, 1983; Barrett, 1991; Walker 

and Barrett, 1991a,b). Amino acids contribute to nematode energy metabolism (Bruce et al., 

1972; Davies and Köhler, 1990) (Fig. 34.1) and some species are reported to survive in vitro 

with glutamine or alanine as the sole carbon source. The malate synthase - isocitrate lyase 

glyoxylate cycle in nematodes (Rothstein and Mayoh, 1964, 1966; Barrett et al., 1970; 

Grantham and Barrett, 1986b) allows all amino acids to be glucogenic (Fig. 34.1). Early studies 

of the interconversion of radio-labeled amino acids suggested there may be no essential amino 

acids for nematodes (Rothstein and Tomlinson, 1961; Rothstein, 1965), however, in vitro 

cultivation of helminths requires supplementation with the L-amino acids arginine, isoleucine, 

tryptophan, valine and histidine (Brockelman and Jackson, 1978; Hata, 1994) and also leucine, 

lysine, methionine, phenyalanine and threonine (Hata, 1994). Incorporation of ammonia via 

the glutamine synthetase (GS) - glutamate synthase (GOGAT) pathway (Umair et al., 2011a) 

may reduce the number of amino acids essential for parasitic nematodes.  

 

34.4 Glutamate 

 

Glutamate is incorporated into proteins, involved in synthesising other amino acids, a source 

of excreted ammonia and a link between nitrogen and energy metabolism through 

interconversion of glutamate and 2-OG, catalysed by glutamate dehydrogenase (GDH) and a 

large group of transaminases (Barrett, 1991).  

 
34.4.1 Glutamate dehydrogenase 

 

GDH catalyses the reversible oxidative deamination of glutamate to ammonium and 2-OG and 

can either function in ammonia assimilation or generation of ammonia and 2-OG (Goldin and 

Frieden, 1971; Hudson and Daniel, 1993). GDHs appear to be universally present in helminths 

and many can use either NAD+ or NADP, although not with equal efficiency (Grantham and 

Barrett, 1986a; Muhamad et al., 2011, Umair et al., 2011b). Allosteric regulation of 

Haemonchus contortus and Teladorsagia circumcincta GDH differed from mammalian GDH: 

ADP and ATP were more stimulatory, GTP was strongly inhibitory and ATP stimulated H. 

contortus GDH amination more markedly than deamination (Umair et al., 2012b). 
 

34.4.2 Glutamine Synthetase (GS) - Glutamate Synthase (GOGAT) 



 

GS, a universal enzyme which catalyses the formation of glutamine from glutamate and 

ammonia, has been described in Heligmosomoides polygyrus, Panagrellus redivivus 

(Grantham and Barrett, 1988) and both L3 and adult T. circumcincta (Muhamad, 2006). 

GOGAT, which catalyses the formation of two glutamate molecules from glutamine and 2-OG 

(Vanoni and Curti, 1999), is present in plants, microorganisms and some insects (Hirayama et 

al., 1998; Scaraffia et al., 2005), in which it supports assimilation of ammonia from low 

concentrations, provided ATP is available (Fisher and Sonenshein, 1991, Miflin and Habash, 

2002). In contrast, GDH is able to assimilate ammonia only from higher concentrations 

(Helling, 1998). In vitro, there was re-uptake by L3 T. circumcincta of excreted ammonia 

(Simpson et al., 2009) and GOGAT activity was increased by incubation of L3 with ammonia 

for a similar time period (Umair et al., 2011a). GOGAT activity has been detected in 

homogenates of L3 and adult T. circumcincta (Muhamad, 2006; Umair et al., 2011a) and adult, 

but not L3, H. contortus (Umair et al., 2011a) and databases contain GOGAT gene sequences 

for free-living and many parasitic nematodes. 

  
34.4.3 Glutaminase 

 

Glutaminase hydrolyses glutamine to glutamate and ammonia. High glutaminase activity was 

detected in T. circumcincta (Muhamad, 2006), low activity in H. polygyrus and P. redivivus 

(Grantham and Barrett, 1986a), but was undetectable in Litomosoides carinii (Davies and 

Köhler, 1990). 

 
34.4.4 GABA (γ-aminobutyrate) shunt 

 

The nematode neurotransmitter GABA (Feng et al., 2002; Schuske et al., 2004) is formed by 

irreversible decarboxylation of L-glutamate by γ-aminobutyrate decarboxylase, the first step of 

the three enzyme GABA shunt, which forms succinate from glutamate and bypasses part of the 

TCA cycle (Balazs et al., 1970).  The other two enzymes are GABA-transaminase and succinic 

semialdehyde dehydrogenase. Although demonstrated in specific tissues (Monteoliva et al., 

1965; Singh et al., 1983), all enzymes of the shunt were detected in homogenates of only some 

parasitic helminths, particularly larger species living in more anaerobic environments 

(Monteoliva et al., 1965; Rasero et al., 1968; MacKenzie et al., 1989), suggesting the GABA 

shunt may not be important in the metabolism of many helminths. 

 

34.5 Proline 

 

The proline required for synthesis of collagen, an important component of the cuticle, can either 

be synthesised from ornithine or glutamate or obtained directly from the host. A fully functional 

mammalian-type ornithine-proline-glutamate pathway has been demonstrated in many 

helminths (Grantham and Barrett, 1986b; Mohamed et al., 2008; Umair et al., 2011c). 

 

34.6 Arginine  

 

In helminths, arginine is a substrate for synthesis of polyamines, agmatine, nitric oxide, 

phosphoarginine, proline, glutamate and urea via the ornithine urea cycle (OUC). Umair et al. 

(2011d) found no evidence in sheep abomasal nematodes of the non-mammalian arginine 

deiminase or dihydrolase pathways, which generate ATP, ornithine, ammonia and CO2 (Zúñiga 

et al., 2002). 
34.6.1 Arginase 

 



Arginase, which irreversibly generates ornithine from arginine, has been described in numerous 

helminth species (Barrett, 1991). The H. contortus and T. circumcincta arginases were unusual 

in not requiring added Mn2+ or another bivalent metal ion for activity, in contrast to rat liver 

arginase (Kuhn et al., 1991). Other divalent cations tested were inhibitory to the arginases of 

both species, as is also the case for Fasciola hepatica arginase (Mohamed et al., 2005). The 

optimal pH of 8-8.5 for the arginases of the gastric nematode parasites (Muhamad, 2006; Umair 

et al., 2011d) may relate to the acidity of their environment, as the arginase of gastric pathogen 

Helicobacter pylori also has an exceptionally low optimal pH of 6.1 (McGee et al., 2004). 

 
34.6.2 Ornithine urea cycle 

 

In ureotelic animals, excreted urea is formed by the OUC, however, helminths generally lack 

a fully functional urea cycle (Janssens and Bryant, 1969) and urea is a minor excretory product 

(Rogers, 1952; Wright, 1975a). Although arginase is present, the other OUC enzymes, 

carbamoyl phosphate synthetase, ornithine transcarbamylase, argininosuccinate synthetase 

(ASS) and argininosuccinate lyase (ASL) have not been detected consistently. All OUC 

enzymes were detected in P. redivivus (Wright, 1975b), Dicrocoelium lanceatum (Rijavec and 

Kuralec, 1965) and F. hepatica (Rijavec and Kuralec, 1965; Mohamed et al., 2005) and in P. 

redivivus, although ASS and ASL activities were very low (Wright, 1975b). 

 
34.6.3 Nitric acid synthase (NOS) 

 

Nitric oxide is a neurotransmitter in helminths and NOS activity can be demonstrated 

histochemically in the central and peripheral nerves of cestodes and trematodes (Gustafsson et 

al., 1996, 1998) and adult H. contortus (Umair et al., 2011d). In contrast to neuronal activity, 

NOS was undetectable in homogenates of whole adult or L3 T. circumcincta or H. contortus 

(Umair et al., 2011d).  

 
34.6.4 Agmatine 

 

Agmatine is formed from arginine by arginine decarboxylase (ADC), which was detected in 

H. contortus, but not in T. circumcincta (Umair et al., 2011d). In H. contortus, ADC appeared 

to be distinct from ornithine decarboxylase (ODC) (Umair et al., 2013b). Agmatine is 

metabolised to putrescine and urea by agmatinase, an enzyme which is generally present in 

non-mammalian tissues (Tabor and Tabor, 1985), including both H. contortus and T. 

circumcincta (Umair et al., 2011d). This was surprising for T. circumcincta, in which ADC 

was not found, however, this apparent activity may be due to arginase, which is capable of 

using either arginine or agmatine as substrate (Ahn et al., 2004).  

 
34.6.5 Polyamines 

 

The polyamines putrescine, spermidine and spermine, which regulate cell growth, survival and 

differentiation, are universally synthesised from ornithine by ODC (Pegg, 1986), whereas 

putrescine is also formed from agmatine by ADC in microorganisms and plants (Slocum et al., 

1984). All three polyamines are actively transported in nematodes (Sharma et al., 1989). Filaria 

appear to acquire putrescine from the host (Wittich et al., 1987) and very low or negligible 

ODC activities have been reported in many other nematodes (Singh et al., 1983; Wittich et al., 

1987; Sharma et al., 1989). Unusually, putrescine was generated from arginine by both the 

ODC and ADC pathways in H. contortus, but not T. circumcincta (Umair et al., 2011d) and 

there was direct oxidation of spermine and spermidine in Ascaris suum (Müller and Walter, 

1992). There were also unusual substrate specificities of the putrescine N-acetyltransferases of 



A. suum and Onchocerca volvulus (Wittich and Walter, 1989, 1990) and the ODC of 

Caenorhabditis elegans (Schaeffer and Donatelli, 1990) and H. contortus (Klein et al., 1997) 

were membrane-bound, rather than cytosolic. 

 
34.6.6 Arginine kinase 

 

Phosphoarginine and arginine kinase are the usual phosphagen and phosphagen kinase in 

nematodes (Platzer et al., 1995, 1999; Umair et al., 2013a), but not in adult cestodes or 

digeneans (Barrett and Lloyd, 1981). 

 

34.7 Serine, threonine and glycine 

 
34.7.1 Glycine 

 

The metabolism of glycine, serine and threonine appear to be consistent with that in other 

animals. There are few reports on helminth glycine metabolism, apart from its interconversion 

to serine by L-serine hydroxymethyltransferase in Nippostrongylus brasiliensis (Walker and 

Barrett, 1991b), Brugia pahangi and Dirofilaria immitis (Barrett, 1983). 
34.7.2 Serine 

 

L-serine is metabolised to phospholipids, glycine, taurine, cysteine and the mammalian 

neurotransmitter D-serine (Kalhan and Hanson, 2012), as well as providing methyl groups to 

tetrahydrofolate (THF), and subsequently to Adomet (S-adenosylmethionine), for methylation 

of proteins, DNA and RNA. Serine is obtained from the breakdown of protein, glycine-serine 

recycling and from pyruvate using phosphoenolpyruvate carboxykinase and is metabolised to 

pyruvate by serine dehydratase, serine aminotransferase or serine hydroxymethyltransferase. 

L-serine dehydratase, which deaminates serine to pyruvate, is active in N. brasiliensis (Walker 

and Barrett, 1992), H. polygyrus and P. redivivus (Grantham and Barrett, 1986a). L-serine 

hydroxymethyltransferase, which catalyses the reversible conversion of serine and THF to 

glycine and 5,10-methylenetetrahydrofolate (Schirch and Peterson, 1980), is present in N. 

brasiliensis (Walker and Barrett, 1991b), B. pahangi and D. immitis (Barrett, 1983). The gene 

is present in the H. contortus genome and in C. elegans is encoded by the mel-32 gene, in which 

it is maternally essential (Vatcher et al., 1998). Reversible conversion of serine to cysteine is 

carried out by the helminth trans-sulphuration enzyme cystathionine β-synthase (Walker and 

Barrett, 1997). 
34.7.3 Threonine 

  

There is no evidence that threonine can be synthesised in helminths from aspartate, as in micro-

organisms and plants (Azevedo et al., 1997), suggesting that its reported synthesis from 

labelled precursors by Caenorhabditis briggsae (Rothstein and Tomlinson, 1961) and H. 

contortus (Kapur and Sood, 1984) may be due to bacterial contamination or symbionts. 

Threonine is converted to pyruvate by threonine dehydrogenase; an encoding gene is annotated 

in the H. contortus genome. An intermediate in this pathway reacts with CoA to produce acetyl-

CoA and glycine. There is an active threonine dehydratase in N. brasiliensis (Walker and 

Barrett, 1991b), H. polygyrus and P. redivivus (Grantham and Barrett, 1986a) and serine 

dehydratase can also metabolise threonine. 
34.7.4 Sarcosine 

 

Sarcosine (N-methylglycine) is degraded to glycine either by sarcosine dehydrogenase 

(SarDH) or sarcosine oxidase (SOX). Whereas in mammals, SarDH activity is essential to 

prevent sarcosinaemia (Reuber et al., 1997), there was no SarDH activity in L3 and adult H. 



contortus and T. circumcincta and sarcosine was demethylated by SOX. Genes encoding SOX 

have been annotated in C. elegans, Ancylostoma caninum and H. contortus.  

 

Bacteria and plants generate sarcosine during the metabolism of creatinine by several 

pathways, including one using creatinase as the last enzyme (Wyss and Kaddurah-Daouk, 

2000). Creatinase, which catalyses the conversion of creatine to sarcosine and urea, was 

demonstrated in adult, but not L3, H. contortus and in both L3 and adult T. circumcincta 

(Muhamad, 2006; Umair et al., 2013c). The enzyme appears to be present in many nematodes, 

as genes encoding creatinase are reported from H. contortus, A. suum, Toxocara canis, Brugia 

malayi, C. elegans and C. briggsae. 
 

34.8 Methionine and cysteine 
 

Walker and Barrett (1997) comprehensively reviewed the metabolism of sulphur amino acids 

by parasitic helminths and concluded that it generally resembled that of their hosts; the 

pathways investigated included the methionine cycle and AdoMet metabolism, trans-

sulphuration, transaminative catabolism of methionine, oxidative catabolism of cysteine and 

glutathione synthesis. There were unusual properties of some nematode enzymes, such as the 

biochemical properties and amino acid structures of some methionine cycle enzymes, 

differences in AdoMet decarboxylases from the corresponding mammalian enzymes (Ndjonka 

et al., 2003) and a  cystathionine β-synthase in  N. brasiliensis which catalysed the non-

mammalian ‘activated l-serine sulphydrase’ reaction (Walker and Barrett,1992).  

 
34.8.1 Glutathione 

 

The tripeptide glutathione (L--glutamyl-L-cysteinylglycine) (GSH) is formed by successive 

additions to glutamate of cysteine and glycine by the enzymes γ-glutamylcysteine and GSH 

synthetases, then degraded by four enzymes, together forming the -glutamyl cycle (Meister, 

1981), which acts as an amino acid transporter. Glutathione has many cellular functions, 

particularly as an antioxidant, in leukotriene, steroid and prostaglandin metabolism and as a 

conjugate of toxic compounds and xenobiotics (Meister, 1981). It is a cellular detoxifying agent 

which reduces the efficiency of anthelmintic drugs. 

 

Glutathione S-transferases (GSTs), which are responsible for conjugation of compounds to 

glutathione, have been identified and characterised or the encoding genes sequenced in many 

parasitic helminths. GSTs are secreted/excreted proteins (Moreno et al., 2011) under 

investigation as targets for vaccine or chemical treatment of parasitic trematodes and 

nematodes. Differences in nematode and host GSTs (Campbell et al., 2001) have allowed, 

vaccines to be developed to reduce parasite burdens and fecundity (Balloul et al., 1987; Da 

Costa et al., 1999).   

 

34.9 Leucine, isoleucine and valine  
 

P. redivivus and H. polygyrus catabolise branched chain amino acids (BCAAs) by pathways 

similar to those in rat liver (Grantham and Barrett, 1986b): 14C-labelled leucine, isoleucine and 

valine were reduced to CO2 and branched chain aminotransferases (BCATs) transaminated 

each to their keto-acids. BCATs have been identified in N. brasiliensis (Walker and Barrett, 

1991b), F. hepatica (Lee et al., 1983) and Ascaridia galli (Singh and Srivastava, 1983) and 

Singh et al. (1983) detected decarboxylase activity for leucine and valine in the intestines, 

ovaries and cuticle of A. galli. The interaction of the three BCAAs seen in vertebrates did not 

appear to operate in C. elegans (Perelman and Lu, 2000). 



 

34.10 Tyrosine, phenylalanine and tryptophan  

 

The aromatic amino acids have been studied extensively as precursors of nematode 

neurotransmitters that are targeted by many chemical anthelmintics (Köhler, 2001). Dopamine, 

catecholamines, tyramine and octopamine are formed from tyrosine, serotonin from tryptophan 

and histamine from histidine (Blenau and Baumann, 2001). Octopamine is synthesised by 

conversion of tyrosine to tyramine by tyrosine decarboxylase, then to octopamine by tyramine 

β-hydroxylase. Octopamine inhibits pharyngeal muscle pumping and egg laying and is an 

antagonist to serotonin (Horvitz et al., 1982). Tyramine also inhibits egg laying in C. elegans 

(Alkema et al., 2005).  In C. elegans, phenylalanine hydroxylase is involved in synthesizing a 

melanin-like pigment (Calvo et al., 2008).  

 

Phenylalanine hydroxylase, tyrosine hydroxylase and tryptophan hydroxylase make up the 

aromatic amino acid hydroxylase family (Fitzpatrick, 2003). L-phenylalanine is catabolised to 

L-tyrosine in C. elegans by phenylalanine hydroxylase (Calvo et al., 2008). Tyrosine is 

catabolised in eukaryotes, including C. elegans (Fisher et al., 2008), by a 5 step pathway, the 

first of which is the removal of the amino group by tyrosine aminotransferase, then 4 steps to 

produce fumarate and acetoacetate. The synthesis of tetrahydrobiopterin, an electron donor for 

these decarboxylases (Fitzpatrick, 2012), requires GTP-cyclohydrolase, the gene encoding 

which has been sequenced and expression monitored during development in T. circumcincta 

and Dictyocaulus viviparus (Baker et al., 2011). 

34.10.1 Tyrosinase 

 

Tyrosinases have mono- and di-phenol oxidase activity and are involved in the synthesis of 

DOPA from tyrosine, melanin synthesis and protein crosslinking. Trematode tyrosinases have 

been extensively studied because of their role in eggshell sclerotinisation and potential for 

chemotherapy or as vaccine candidates (Fitzpatrick et al., 2007; He et al., 2012; Bae et al., 

2015). 
34.10.2 Chorismate mutase (CM) 

 
CM, the last enzyme of the seven step shikimate pathway which synthesises tyrosine and 

phenylalanine in plants and microorganisms, is expressed by plant parasitic nematodes of the 

genera Meloidogyne (Lambert et al., 1999; Long et al., 2006), Globodera (Jones et al., 2003) 

and Pratylenchus (Haegeman et al., 2011). There is no report of a complete shikimate pathway 

in nematodes and CM is suggested to have been acquired from microorganisms through 

horizontal gene transfer (Yan et al., 1998). Expression of CM in the Globodera pallida 

suboesophageal gland (Jones et al., 2003; Long et al., 2006) supports the proposal that it is 

secreted to assist the nematodes in penetrating the root nodule through the development of 

feeding sites, although Pratylenchus coffeae, which also expresses the protein, does not form 

feeding sites. This enzyme may have a role in the suppression of the host response to the 

parasites (Curtis, 2007). 

 

 

34.11 Alanine  

Helminths very actively transaminate L-alanine reversibly to pyruvate using 2-OG as the amino 

group donor, whereas D-alanine was transaminated at extremely low rates by H. contortus and 

T. circumcincta (Walker and Barrett, 1991a). Alanine may not be used as substrate by other 

enzymes, such as alanine racemase, which was not detected in adult N. brasiliensis (Walker 



and Barrett, 1991a). Alanine transaminase (AlaAT) activity has been reported in all helminth 

groups (Barrett, 1991; Walker and Barrett, 1991a; Muhmad, 2006) in both cytosolic and 

mitochondrial forms; mAlaAT was responsible for 80% of activity in adult N. brasiliensis, 

whereas in H. contortus 54% of activity was cytosolic and 22% was associated with the cell 

debris and cuticle fractions (Walker and Barrett, 1991a). H. contortus cAlaAT was less tolerant 

of temperatures of 45oC than the rat liver enzyme and responded differently to protective 

agents. Low host vitamin B6 levels reduced AlaAT activity in L. carinii (Beg et al., 1995) and 

Hymenolepis diminuta (Platzer and Roberts, 1970).   

 

34.12 Aspartate and asparagine 

 

High aspartate transaminase (AspAT) activity has been reported in cestodes (Wertheim et al., 

1960; Rasero et al., 1968), digeneans (Watts, 1970) and nematodes (Rasero et al., 1968; Walker 

and Barrett, 1991b; Muhamad, 2006). The properties T. circumcincta AspAT were consistent 

with those of AspAT from other organisms (Muhamad, 2006). 

 

Asparagine synthesis from aspartate by glutamine-dependent asparagine synthetase was 

identified in P. redivivus by Grantham and Barrett (1988).  Asparagine can be catabolised by 

asparaginase or by transamination: asparaginase generates aspartate and ammonium, whereas 

the transamination produces 2-oxosuccinamate. Asparagine transaminase activity was present 

in H. diminuta, Hymenolepis citelli (Wertheim et al., 1960), P. redivivus and H. polygyrus 

(Grantham and Barrett, 1986a). Asparaginase activity was localised to the cuticle of D. immitis 

and an active recombinant protein expressed (Tsuji et al., 1999).  

 

34.13 Lysine 
 

L-lysine cannot be synthesised in animal tissues, but is metabolised through either the 

pipecolate or saccharopine pathways (Broquist, 1991). A bifunctional enzyme (Gaziola et al., 

1997) with both lysine-ketoglutarate reductase (LKR) and saccharopine dehydrogenase 

(SacDH) activity (Galili et al., 2001) forms the saccharopine pathway, the major route for 

lysine regulation and catabolism in plants and animals (Broquist, 1991; Tang et al., 1997; 

Arruda et al., 2000). This was the sole route for lysine catabolism in L3 abomasal nematodes, 

as 1-piperideine-carboxylate reductase activity resulted in an incomplete pipecolate pathway, 

whereas this pathway was functional in adult worms (Umair et al., 2012a). Nematode gene 

sequences deposited in databases are consistent with a bifunctional LKR-SacDH enzyme. Both 

LKR and SacDH were dual co-factor enzymes and not specific for either NAD+ or NADP+, as 

is the case in other organisms, in which there are NADPH-specific LKR activity and NAD+-

specific SacDH activity (Tang et al., 1997).  

 

34.14 Conclusions 

 

Amino acid metabolism has been investigated in depth mainly in nematodes, particularly 

parasitic species, making it difficult to compare pathways over the many groups of helminths. 

As there are species and life-cycle stage differences in expression of enzymes, the presence of 

genes encoding the proteins does not ensure enzyme activity. The main differences in 

metabolism of amino acids from that in other animals are in the properties of individual 

enzymes, rather than the absence or presence of pathways. Unusual features, at least in some 

helminths, are the lack a full ornithine-urea cycle, the presence of creatinase activity, synthesis 

of polyamines from either ornithine or agmatine and incorporation of ammonia into glutamate 

through the GS-GOGAT pathway. There were differences between closely related species, 



such as common sheep abomasal nematode parasites, which were not identical in expressing 

glutamate synthase, arginine decarboxylase and 1-piperideine-carboxylate reductase. Overall, 

helminth metabolism was more flexible than generally seen in animals, particularly in the 

ability to synthesise amino acids from ammonia and degradation of all amino acids to glucose, 

because of a functional glyoxylate shunt. 
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Fig. 34.1. Entry points of amino acids into energy metabolism. All amino acids are glucogenic, 

at least in nematodes, because of a functional glyoxylate cycle. 

 

 

 

 


