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ABSTRACT. Land users and managers require decision support tools (DST) that enable them to estimate losses of
contaminants from land to freshwater. The MitAgator™ is a DST that estimates losses of nitrogen, phosphorus, sediment,
and fecal indicator bacteria (E. coli) and the cost-effectiveness of different strategies to mitigate losses so that a water
quality target can be met at least cost. Some of the algorithms present within the DST Overseer® (a standard DST used in
New Zealand for N and P management) have been modified and appended to include spatial analysis in the MitAgator™.
Outputs from MitAgator™ showed good (R? > 0.77; P<0.001) prediction of measured N and P losses across a range of
land uses, but accuracy decreased at larger (catchment) scales. An analysis for P outputs indicated that the most sensitive
inputs were hydrological characteristics, followed by soil characteristics and P inputs. Although national databases are
used for many of these, if better local data are available, then they should be used. Furthermore, while easy to use by a
novice, outputs of the MitAgator™ should only be interpreted in collaboration with an experienced user so that limitations

around cost-effectiveness estimates and spatial and temporal scales are not exceeded.

Keywords. Good Management Practices (GMPs), E. coli, Nitrogen, Phosphorus, Sediment.
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INTRODUCTION

Tensions are arising between farming practices and environmental policy in New Zealand and other developed
countries - worldwide. With the need to produce more food, but remain profitable within catchment water quality limits,
tools are required that model contaminant emissions from land to water.

Some tools are available that estimate farm losses of contaminants such as nitrogen (N), phosphorus (P), and sediment
at the farm and/or catchment scale (Hewett et al., 2009; Pangopoulos et al., 2012). Some (e.g. Farmscoper; Gooday et al.,
2014), also append cost-curves for strategies to mitigate contaminant losses with optimization procedures to minimize the
potential cost. These tools vary in their sophistication, data needs, ease of use, and output (e.g. losses, but not cost
estimates, or vice-versa). To be effective in guiding farming practices and improving water quality, such tools should:
accurately capture the complexity of edaphic (e.g. catchment characteristics, climate) and farm management systems; use
readily available data; consider costs involved in actions to mitigate losses; and be flexible enough to provide
recommendations tailored to an individuals need.

In New Zealand the decision support tool (DST) OVERSEER® Nutrient Budgets (Overseer) is used as an industry
standard for recommending nutrient inputs and estimating nutrient losses to water at the farm scale (Wheeler et al., 2014).
Overseer is also used by many provincial regulatory authorities as a tool to enforce limits on nutrients losses and maintain
or improve catchment water quality (e.g. Otago Regional Council, 2014). However, Overseer cannot spatially identify
where on an enterprise (viz. farm) contaminants originate. Furthermore, there is increasing evidence that many
contaminants come from a minority of a catchment or farm’s area, called critical source areas ( McDowell et al., 2014), By
targeting critical source areas the cost-effectiveness of mitigation strategies can be significantly improved over an
untargeted approach, but Overseer cannot target critical source areas. Nevertheless, in setting up Overseer for an enterprise
a large amount of information is gained on the enterprise operation. Overseer also works on an annual time-step, which is
well aligned to strategic decisions and the measurement of how an enterprise would make changes to conform to a
catchment water quality objective. Hence, our objective was to extend the approach used by Overseer in developing a
software-based decision support tool that estimates and maps the relative risk of N, P, sediment, and fecal indicator
bacteria (E. coli) loss from land to water, estimates the cost and effectiveness of specific strategies to mitigate losses, and
provides an optimal mix of the best strategies to reach a specific target - either a percentage decrease in contaminant loss
or relative decrease in load achievable within a budget ($ ha™). This paper outlines the structure and function, a
comparison of modelled losses against measured losses, and a sensitivity analysis of outputs from the software termed -

MitAgator™. For brevity, focus is placed on how well this tool estimates losses of N, but more fully, P from agricultural
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land across a range of scales.

STRUCTURE AND FUNCTION

The inputs to MitAgator™ are derived from Overseer files that provide management data (e.g. stocking rates, fertilizer
applications) and national databases (e.g. Land Cover Database 4; LRIS, 2014) that provide physical site characteristics
(e.g. soil types; Lilburne et al., 2004). Additional data can be input by the user where they are known to be of better
quality. For instance, the user may have soil test data that are either more recent or at a finer spatial scale than present in
the Overseer file (fig. 1). These data are used to create a map package that is fed into the application that controls
interaction between databases, the MitAgator™ engine and visualization. The engine contains algorithms from published

studies (McDowell et al., 2005; 2008; Dymond et al., 2010; Rutherford and Wheeler, 2011; Wheeler et al., 2011,

Muirhead, 2014) that estimate losses to surface waterways for E. coli, N, P and sediment from each parcel of land.
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small proportion of the farm, block, or paddock (whichever is selected as the area of interest) (fig. 2).
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Figure 2. Example map of the estimated P (top) and E. coli (bottom) losses from a property. Losses are classified by quantiles (kg P ha* yr?) or

risk, with the uppermost quantile or risk category identifying critical source areas of P loss.

After generating loss maps, estimates for mitigating losses occur in two steps. The user firstly defines the mitigation
area. This can be the whole farm, a block (group) within the farm of fields under similar management, a single field, or a
quantile such as critical source areas. Second, the user can impose a single mitigation or several mitigations from a list

attuned to a specific contaminant, or set a target based on a percentage decrease desired (e.g. 40% less N loss) or cost (e.g.
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$ hal) and let an automated linear optimization routine provide the optimal mix of strategies to meet the target. The
effectiveness and cost of each mitigation strategy is based on empirical data with uncertainties calculated as the 95%
tolerance intervals for studies of each mitigation strategy conducted across New Zealand (see McDowell, 2014). After
applying mitigation strategies to the targeted area, additional outputs are provided as a new map of estimated losses
together with histograms for load decreases compared to the targeted area and estimates of the upper and lower range of
costs and efficiencies.

The automated linear optimization routine selects a set of compatible mitigation strategies which maximizes the
mitigation of contaminant losses for a given cost, or which minimizes the cost for a given level of mitigation. The program
achieves this via linear programming methodology, using the open source Ipsolve package (Berkelaar et al., 2004). Within
the program, compatible combinations of mitigation strategies are added to a linear programming formulation involving
binary variables and special ordered sets of type One (SOS1; http://Ipsolve.sourceforge.net/5.5/LPBasics.htm). The
combination of strategies that constitutes the optimal solution is then found by Ipsolve using a branch and bound solution

strategy, with carefully chosen branch and bound parameters to ensure sufficient solution speed.

CORROBORATION

COMPARISON TO MEASURED LOSSES

As part of a corroboration exercise, 48 measured annual losses were compared against those estimated by MitAgator™.
The software uses algorithms from Overseer (the farm-scale standard for N and P loss estimates in New Zealand) that have
been modified so they are spatially relevant. For brevity, measured losses were only compared for N and P; comparison of
outputs of algorithms used in MitAgator™ and measured E. coli and sediment losses can be found in Muirhead (2014) and
Dymond et al. (2010), respectively. Losses from a range of locations (from the northernmost and southernmost provinces
of New Zealand) and scales were included. Spatially, N losses were spread between 10 plot (< 1 ha), 7 field (1-10 ha), 7
block (10-100 ha, 13 farm (100-1000 ha) and 8 catchment (>1000 ha) scales. The number of farm, field, block, and
catchment scale studies measuring P losses was 11, 8, 12, and 9, respectively. A range of soil orders (including Allophanic,
Brown, Gley, Pallic, Podzol and Pumice; New Zealand soil classification) and land uses (dairy, red deer, forested, and

mixed sheep and beef farm types) were represented (fig. 3).
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Figure 3. Measured N and P losses according to land use (left) and scale (right). The top and bottom of the boxes represent the 25th and 75th
percentiles, respectively; whiskers represent the 10th and 90th percentiles (where calculated), the circles are outliers, and the line in the box is
the median value. Note that variation in plot scale losses is skewed by studies of forage crop blocks.

It is important to note that the algorithms obtained from Overseer estimate N losses from the root zone and P losses up
to 2nd order streams, whereas measured losses were from small, hydrologically isolated plots (< 1ha), to large catchments
that integrate sources and sinks over a large area. It is therefore of no surprise that estimates tended to be poorer with
increasing spatial scale or at high rainfall (> 1200 mm) with less predictable hydrology (fig. 4). Nevertheless, N and P
losses were predicted with reasonable accuracy (R* > 0.77; P<0.001; fig. 4). Significant relationships can be found with
measured versus predicted sediment, and E. coli losses (Dymond et al., 2010; Muirhead, 2014). Moreover, the need for
better spatial representation, and for estimates of sediment and E. coli (in addition to N and P) losses were major reasons

for the development of MigAgator™ over and above what could be estimated with DSTs such as Overseer.
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Figure 4. Comparison of measured N and P losses of different landuses against those estimated by MitAgator™. The regression is fitted for data
with rainfall < 1200 mm. Coefficients of determination for relationships including all data were 0.42 and 0.71, respectively.

SENSITIVITY ANALYSIS

A sensitivity analysis was conducted to determine which of up to 20 input factors had the most leverage on estimated P
losses from eight different enterprises (table 1) and to serve as a check for developers that sensitive factors had good
quality data. Sensitivity analyses were conducted such that outputs for numerical variables were generated by

incrementally varying inputs by 50, 75, 100, 150, and 200% greater or less than the initial state (table 1). Categorical
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variables (e.g. Use of forage crops, Use of tile drain, and Use of flood irrigation) were altered through all of their
categories as were binary (yes/no) variables. The interaction of up to two variables was also tested. This resulted in 90
million combinations of factors. For analysis, a 1/100 random sample was taken. This data set of 900,000 results was
analyzed to determine this size of the main effects and the 2-way interactions. The variate analyzed was the natural log of
the P loss. The data were analyzed using Genstat 16™ Edition (https://www.vsni.co.uk/software/genstat/).

An example sensitivity analysis is given for P losses from enterprise three (an irrigated dairy farm) in Figure 5. Outputs
for all enterprises generally had hydrological variables (e.g. rainfall or drainage class) as the most sensitive, followed by
soil characteristics (e.g. slope and anion storage capacity; ASC) and application rates (kg P ha® y?) of P inputs.
Hydrological variables in addition to slope all strongly influence surface runoff. Other variables of high sensitivity to
outputs were enterprise specific and included fence-line pacing in the deer farm and the use of forage crops on the deer

and sheep and beef farms.

10
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Table 1. Initial state of variables included in the sensitivity analysis for P losses from eight different enterprise types.

Enterprise
1 2 3 4 5 6 7 8
Variable? Sheep & Beef Deer Dairy Dairy Wheat-fallow- Wheat-winter Kiwifruit Forestry
(irrigated) (dryland) wheat crop-wheat

Soil Olsen P concentration (mg L) 15 20 30 40 30 30 30 10
Slope (class) rolling rolling flat flat flat flat flat easy
Rainfall (mm) 1100 1100 700 1100 800 800 1100 1100
Irrigation (mm) 2 - 600 - 100 100 - -
Soil drainage class moderate moderate moderate moderate moderate moderate moderate moderate
Anion storage capacity (0-100%) 30 30 30 30 30 30 50 50
P fertiliser applied (kg P ha?) 20 25 40 40 30 30 30 5
Timing and type of P application (vis-a-vis

risk month for loss) low low low low low low low low
Dairy shed effluent applied (kg P ha't) - - 10 10 - - - -
Month of effluent application (risk)* - - moderate moderate - - - -
Good storage capacity for effluent - - Yes/no Yes/no - - - -
Use of artificial drainage Yes/no Yes/no Yes/no Yes/no - - - -
Wallowing! - Yes/no - - - - - -
Soil organic C (%) 5% 5% 5% 5% 3% 3% 5% 5%
Use of forage crops (winter; % of farm) 10 10 10 10 - - - -
Use of forage crops (summer; % of farm) 10 10 10 10 - - - -
Clay (%) 15 15 15 15 15 15 15 15
Use of flood irrigation (border dyke) Yes/no - Yes/no - - - - -
Fence-line pacing - Yes/no - - - - - -

1See MPI (2014) and www.overseer.org.nz for fuller explanation of categorical and binary variables.

2 not applicable.

11
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Figure 5. Effects measured as the F ratio statistic for variation of variables in the estimation of P losses by MitAgator™ for enterprise three (an
irrigation dairy farm); note the log scale on the axis. See McDowell et al. (2005) and MP 1 (2014) for an explanation of each variable.

LIMITATIONS

Although MitAgator™ is designed to be operated by a novice, it still relies on the user having quality input data
(including a correct Overseer file). Hence, outputs should be interpreted in collaboration with an experienced user. There
are several limitations beyond which the model will give poor results. For instance, it may be tempting to apply
MitAgator™ to a large catchment, albeit as a mosaic of smaller sub-catchments. However, a more appropriate choice
would be models such as CLUES (Woods et al., 2006) and SPARROW (Preston et al., 2011), which can account for in-

stream attenuation down New Zealand catchment networks.
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Another limitation is the temporal estimation of annual losses and mitigation performance. Both losses and
performance may be subject to wide variation according to, for instance, large runoff events that account for the majority
of loss but may only occur over a couple of days. Furthermore, there may be time lags in the generation of contaminant
losses associated with a landuse change or in the mitigation of losses. Due to the use of Overseer algorithms, MitAgator™
assumes that both the generation of contaminant losses and effect of mitigation strategies are at steady state.

However, it is also important that MitAgator™ outputs recommended by an experienced user be discussed and
challenged (if necessary) by land users/owners. Only those who are utilizing the land day-by-day will be able to determine
if the cost estimates or indeed the practicality of using a specific mitigation strategy or group of strategies is realistic. As
the model is bound to empirical data it may therefore only be representative of the locations where experiments were

conducted. In such cases the user can input their own estimates of the cost of mitigation strategies.

CONCLUSIONS

Analysis of outputs from the beta version suggest that variation in contaminant (e.g. N and P) losses can be predicted
(R? > 0.77; P<0.001) by MitAgator™ at the block and farm scale, with less certainty at the catchment scale and at higher
rainfall rates. An example sensitivity analysis indicated that for P the most sensitive factors, and therefore those that
should have the best quality data to ensure accurate outputs, were associated with hydrology, followed by soil
characteristics and finally P inputs. The intent is that MitAgator™ can act as part of a package of measures to assist
farmers to minimize the cost of complying with water quality standards being developed as part of the National Policy

Statement on Freshwater Management in New Zealand (MfE, 2014).
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