
 
 
 

3 

AN INITIAL ASSESSMENT OF MITAGATORTM: A FARM SCALE 1 

TOOL TO ESTIMATE AND MITIGATE THE LOSS OF CONTAMINANTS 2 

FROM LAND TO WATER  3 

R.W. McDowell, G.M. Lucci, G. Peyroux, H. Yoswara, M. Brown, N. Cox, P. Smale, D. Wheeler, N. 4 
Watkins, C. Smith, R. Monaghan, R. Muirhead, W. Catto, J. Risk 5 

The authors are Rich. W. McDowell, Principal Scientist, AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand and Professor, 6 

Faculty of Life Sciences, Lincoln University, Lincoln, New Zealand; Gina M. Lucci, Scientist, Harry Yoswara, IT Developer, Natalie Watkins, 7 

Scientist, and David Wheeler, Senior Scientist AgResearch, Ruakura Research Centre, Hamilton, New Zealand; Greg Peyroux, IT Manager, Matt 8 

Brown, GIS Consultant, Ian Kalmakoff, IT Developer, Neil Cox, Senior Biometrician, Paul Smale, Scientist, Ross Monaghan, Senior Scientist, and 9 

Richard Muirhead, Team Leader, AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand; Chris Smith, Research Associate, 10 

AgResearch, 204 Woodlands Morton Mains Road, RD 1 Invercargill, New Zealand; Warwick Catto, Science Manager, and Jim Risk, Science Advisor, 11 

Ballance Agri-Nutrients, Tauranga, New Zealand. Corresponding author: Rich. McDowell, AgResearch, Invermay Agricultural Centre, Mosgiel 9053, 12 

New Zealand; phone: +643 489 9262; e-mail: richard.mcdowell@agresearch.co.nz 13 

 14 

ABSTRACT. Land users and managers require decision support tools (DST) that enable them to estimate losses of 15 

contaminants from land to freshwater. The MitAgatorTM is a DST that estimates losses of nitrogen, phosphorus, sediment, 16 

and fecal indicator bacteria (E. coli) and the cost-effectiveness of different strategies to mitigate losses so that a water 17 

quality target can be met at least cost. Some of the algorithms present within the DST Overseer® (a standard DST used in 18 

New Zealand for N and P management) have been modified and appended to include spatial analysis in the MitAgatorTM. 19 

Outputs from MitAgatorTM showed good (R2 > 0.77; P<0.001) prediction of measured N and P losses across a range of 20 

land uses, but accuracy decreased at larger (catchment) scales. An analysis for P outputs indicated that the most sensitive 21 

inputs were hydrological characteristics, followed by soil characteristics and P inputs. Although national databases are 22 

used for many of these, if better local data are available, then they should be used. Furthermore, while easy to use by a 23 

novice, outputs of the MitAgatorTM should only be interpreted in collaboration with an experienced user so that limitations 24 

around cost-effectiveness estimates and spatial and temporal scales are not exceeded.  25 
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INTRODUCTION  28 
 29 

Tensions are arising between farming practices and environmental policy in New Zealand and other developed 30 

countries - worldwide. With the need to produce more food, but remain profitable within catchment water quality limits, 31 

tools are required that model contaminant emissions from land to water.  32 

Some tools are available that estimate farm losses of contaminants such as nitrogen (N), phosphorus (P), and sediment 33 

at the farm and/or catchment scale (Hewett et al., 2009; Pangopoulos et al., 2012). Some (e.g. Farmscoper; Gooday et al., 34 

2014), also append cost-curves for strategies to mitigate contaminant losses with optimization procedures to minimize the 35 

potential cost. These tools vary in their sophistication, data needs, ease of use, and output (e.g. losses, but not cost 36 

estimates, or vice-versa). To be effective in guiding farming practices and improving water quality, such tools should: 37 

accurately capture the complexity of edaphic (e.g. catchment characteristics, climate) and farm management systems; use 38 

readily available data; consider costs involved in actions to mitigate losses; and be flexible enough to provide 39 

recommendations tailored to an individuals need.  40 

In New Zealand the decision support tool (DST) OVERSEER® Nutrient Budgets (Overseer) is used as an industry 41 

standard for recommending nutrient inputs and estimating nutrient losses to water at the farm scale (Wheeler et al., 2014). 42 

Overseer is also used by many provincial regulatory authorities as a tool to enforce limits on nutrients losses and maintain 43 

or improve catchment water quality (e.g. Otago Regional Council, 2014). However, Overseer cannot spatially identify 44 

where on an enterprise (viz.  farm) contaminants originate. Furthermore, there is increasing evidence that many 45 

contaminants come from a minority of a catchment or farm’s area, called critical source areas ( McDowell et al., 2014), By 46 

targeting critical source areas the cost-effectiveness of mitigation strategies can be significantly improved over an 47 

untargeted approach, but Overseer cannot target critical source areas. Nevertheless, in setting up Overseer for an enterprise 48 

a large amount of information is gained on the enterprise operation. Overseer also works on an annual time-step, which is 49 

well aligned to strategic decisions and the measurement of how an enterprise would make changes to conform to a 50 

catchment water quality objective. Hence, our objective was to extend the approach used by Overseer in developing a 51 

software-based decision support tool that estimates and maps the relative risk of N, P, sediment, and fecal indicator 52 

bacteria (E. coli) loss from land to water, estimates the cost and effectiveness of specific strategies to mitigate losses, and 53 

provides an optimal mix of the best strategies to reach a specific target - either a percentage decrease in contaminant loss 54 

or relative decrease in load achievable within a budget ($ ha-1). This paper outlines the structure and function, a 55 

comparison of modelled losses against measured losses, and a sensitivity analysis of outputs from the software termed - 56 

MitAgatorTM. For brevity, focus is placed on how well this tool estimates losses of N, but more fully, P from agricultural 57 



   5 

land across a range of scales. 58 

STRUCTURE AND FUNCTION 59 
 60 

The inputs to MitAgatorTM are derived from Overseer files that provide management data (e.g. stocking rates, fertilizer 61 

applications) and national databases (e.g. Land Cover Database 4; LRIS, 2014) that provide physical site characteristics 62 

(e.g. soil types; Lilburne et al., 2004). Additional data can be input by the user where they are known to be of better 63 

quality. For instance, the user may have soil test data that are either more recent or at a finer spatial scale than present in 64 

the Overseer file (fig. 1). These data are used to create a map package that is fed into the application that controls 65 

interaction between databases, the MitAgatorTM engine and visualization. The engine contains algorithms from published 66 

studies (McDowell et al., 2005; 2008; Dymond et al., 2010; Rutherford and Wheeler, 2011; Wheeler et al., 2011; 67 

Muirhead, 2014) that estimate losses to surface waterways for E. coli, N, P and sediment from each parcel of land. 68 

 69 

Figure 1. Wiring diagram for MitAgatorTM. 70 
 71 

Outputs are projected as a map of estimated annual losses (kg for N, P, and sediment losses and a relative risk of low, 72 

medium, and high for E. coli losses) broken into 20% quantiles for each contaminant. The uppermost quantile (or risk 73 

category) highlights critical source areas i.e. areas that account for a high proportion of losses, but occupy a relatively 74 

small proportion of the farm, block, or paddock (whichever is selected as the area of interest) (fig. 2).  75 
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76 

 77 
 78 

Figure 2. Example map of the estimated P (top) and E. coli (bottom) losses from a property. Losses are classified by quantiles (kg P ha-1 yr-1) or 79 

risk, with the uppermost quantile or risk category identifying critical source areas of P loss. 80 

 81 

After generating loss maps, estimates for mitigating losses occur in two steps. The user firstly defines the mitigation 82 

area. This can be the whole farm, a block (group) within the farm of fields under similar management, a single field, or a 83 

quantile such as critical source areas. Second, the user can impose a single mitigation or several mitigations from a list 84 

attuned to a specific contaminant, or set a target based on a percentage decrease desired (e.g. 40% less N loss) or cost (e.g. 85 
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$ ha-1) and let an automated linear optimization routine provide the optimal mix of strategies to meet the target. The 86 

effectiveness and cost of each mitigation strategy is based on empirical data with uncertainties calculated as the 95% 87 

tolerance intervals for studies of each mitigation strategy conducted across New Zealand (see McDowell, 2014). After 88 

applying mitigation strategies to the targeted area, additional outputs are provided as a new map of estimated losses 89 

together with histograms for load decreases compared to the targeted area and estimates of the upper and lower range of 90 

costs and efficiencies. 91 

The automated linear optimization routine selects a set of compatible mitigation strategies which maximizes the 92 

mitigation of contaminant losses for a given cost, or which minimizes the cost for a given level of mitigation. The program 93 

achieves this via linear programming methodology, using the open source lpsolve package (Berkelaar et al., 2004). Within 94 

the program, compatible combinations of mitigation strategies are added to a linear programming formulation involving 95 

binary variables and special ordered sets of type One (SOS1; http://lpsolve.sourceforge.net/5.5/LPBasics.htm). The 96 

combination of strategies that constitutes the optimal solution is then found by lpsolve using a branch and bound solution 97 

strategy, with carefully chosen branch and bound parameters to ensure sufficient solution speed. 98 

CORROBORATION  99 

 100 

COMPARISON TO MEASURED LOSSES 101 

 102 
As part of a corroboration exercise, 48 measured annual losses were compared against those estimated by MitAgatorTM. 103 

The software uses algorithms from Overseer (the farm-scale standard for N and P loss estimates in New Zealand) that have 104 

been modified so they are spatially relevant. For brevity, measured losses were only compared for N and P; comparison of 105 

outputs of algorithms used in MitAgatorTM and measured E. coli and sediment losses can be found in Muirhead (2014) and 106 

Dymond et al. (2010), respectively. Losses from a range of locations (from the northernmost and southernmost provinces 107 

of New Zealand) and scales were included. Spatially, N losses were spread between 10 plot (< 1 ha), 7 field (1-10 ha), 7 108 

block (10-100 ha, 13 farm (100-1000 ha) and 8 catchment (>1000 ha) scales. The number of farm, field, block, and 109 

catchment scale studies measuring P losses was 11, 8, 12, and 9, respectively. A range of soil orders (including Allophanic, 110 

Brown, Gley, Pallic, Podzol and Pumice; New Zealand soil classification) and land uses (dairy, red deer, forested, and 111 

mixed sheep and beef farm types) were represented (fig. 3).  112 
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 113 
Figure 3. Measured N and P losses according to land use (left) and scale (right). The top and bottom of the boxes represent the 25th and 75th 114 
percentiles, respectively; whiskers represent the 10th and 90th percentiles (where calculated), the circles are outliers, and the line in the box is 115 

the median value. Note that variation in plot scale losses is skewed by studies of forage crop blocks. 116 
 117 

It is important to note that the algorithms obtained from Overseer estimate N losses from the root zone and P losses up 118 

to 2nd order streams, whereas measured losses were from small, hydrologically isolated plots (< 1ha), to large catchments 119 

that integrate sources and sinks over a large area. It is therefore of no surprise that estimates tended to be poorer with 120 

increasing spatial scale or at high rainfall (> 1200 mm) with less predictable hydrology (fig. 4). Nevertheless, N and P 121 

losses were predicted with reasonable accuracy (R2 > 0.77; P<0.001; fig. 4). Significant relationships can be found with 122 

measured versus predicted sediment, and E. coli losses (Dymond et al., 2010; Muirhead, 2014). Moreover, the need for 123 

better spatial representation, and for estimates of sediment and E. coli (in addition to N and P) losses were major reasons 124 

for the development of MigAgatorTM over and above what could be estimated with DSTs such as Overseer.  125 

 126 
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 127 

 128 
 129 

Figure 4. Comparison of measured N and P losses of different landuses against those estimated by MitAgatorTM. The regression is fitted for data 130 
with rainfall < 1200 mm. Coefficients of determination for relationships including all data were 0.42 and 0.71, respectively. 131 

 132 

SENSITIVITY ANALYSIS 133 

 134 
A sensitivity analysis was conducted to determine which of up to 20 input factors had the most leverage on estimated P 135 

losses from eight different enterprises (table 1) and to serve as a check for developers that sensitive factors had good 136 

quality data. Sensitivity analyses were conducted such that outputs for numerical variables were generated by 137 

incrementally varying inputs by 50, 75, 100, 150, and 200% greater or less than the initial state (table 1). Categorical 138 
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variables (e.g. Use of forage crops, Use of tile drain, and Use of flood irrigation) were altered through all of their 139 

categories as were binary (yes/no) variables. The interaction of up to two variables was also tested. This resulted in 90 140 

million combinations of factors. For analysis, a 1/100 random sample was taken. This data set of 900,000 results was 141 

analyzed to determine this size of the main effects and the 2-way interactions. The variate analyzed was the natural log of 142 

the P loss. The data were analyzed using Genstat 16th Edition (https://www.vsni.co.uk/software/genstat/). 143 

An example sensitivity analysis is given for P losses from enterprise three (an irrigated dairy farm) in Figure 5. Outputs 144 

for all enterprises generally had hydrological variables (e.g. rainfall or drainage class) as the most sensitive, followed by 145 

soil characteristics (e.g. slope and anion storage capacity; ASC) and application rates (kg P ha-1 y-1) of P inputs. 146 

Hydrological variables in addition to slope all strongly influence surface runoff. Other variables of high sensitivity to 147 

outputs were enterprise specific and included fence-line pacing in the deer farm and the use of forage crops on the deer 148 

and sheep and beef farms.   149 
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Table 1. Initial state of variables included in the sensitivity analysis for P losses from eight different enterprise types. 150 
 151 

 Enterprise 
 1 2 3 4 5 6 7 8 

Variable1 Sheep & Beef Deer Dairy 
(irrigated) 

Dairy 
(dryland) 

Wheat-fallow-
wheat 

Wheat-winter 
crop-wheat 

Kiwifruit Forestry 

Soil Olsen P concentration (mg L-1) 15 20 30 40 30 30 30 10 
Slope (class) rolling rolling flat flat flat flat flat easy 
Rainfall (mm) 1100 1100 700 1100 800 800 1100 1100 
Irrigation (mm) -2 - 600 - 100 100 - - 
Soil drainage class moderate moderate moderate moderate moderate moderate moderate moderate 
Anion storage capacity (0-100%) 30 30 30 30 30 30 50 50 
P fertiliser applied (kg P ha-1) 20 25 40 40 30 30 30 5 
Timing and type of P application (vis-à-vis 
risk month for loss) low low low low low low low low 
Dairy shed effluent applied (kg P ha-1) - - 10 10 - - - - 
Month of effluent application (risk)1 - - moderate moderate - - - - 
Good storage capacity for effluent  - - Yes/no Yes/no - - - - 
Use of artificial drainage Yes/no Yes/no Yes/no Yes/no - - - - 
Wallowing1 - Yes/no - - - - - - 
Soil organic C (%) 5% 5% 5% 5% 3% 3% 5% 5% 
Use of forage crops (winter; % of farm) 10 10 10 10 - - - - 
Use of forage crops (summer; % of farm) 10 10 10 10 - - - - 
Clay (%) 15 15 15 15 15 15 15 15 
Use of flood irrigation (border dyke) Yes/no - Yes/no - - - - - 
Fence-line pacing - Yes/no - - - - - - 

1 See MPI (2014) and www.overseer.org.nz for fuller explanation of categorical and binary variables. 152 
2 not applicable. 153 
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 154 
 155 

Figure 5. Effects measured as the F ratio statistic for variation of variables in the estimation of P losses by MitAgatorTM for enterprise three (an 156 
irrigation dairy farm); note the log scale on the axis. See McDowell et al. (2005) and MPI (2014) for an explanation of each variable. 157 

 158 

LIMITATIONS 159 
 160 

Although MitAgatorTM is designed to be operated by a novice, it still relies on the user having quality input data 161 

(including a correct Overseer file). Hence, outputs should be interpreted in collaboration with an experienced user. There 162 

are several limitations beyond which the model will give poor results. For instance, it may be tempting to apply 163 

MitAgatorTM to a large catchment, albeit as a mosaic of smaller sub-catchments. However, a more appropriate choice 164 

would be models such as CLUES (Woods et al., 2006) and SPARROW (Preston et al., 2011), which can account for in-165 

stream attenuation down New Zealand catchment networks.  166 
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Another limitation is the temporal estimation of annual losses and mitigation performance. Both losses and 167 

performance may be subject to wide variation according to, for instance, large runoff events that account for the majority 168 

of loss but may only occur over a couple of days. Furthermore, there may be time lags in the generation of contaminant 169 

losses associated with a landuse change or in the mitigation of losses. Due to the use of Overseer algorithms, MitAgatorTM 170 

assumes that both the generation of contaminant losses and effect of mitigation strategies are at steady state.  171 

However, it is also important that MitAgatorTM outputs recommended by an experienced user be discussed and 172 

challenged (if necessary) by land users/owners. Only those who are utilizing the land day-by-day will be able to determine 173 

if the cost estimates or indeed the practicality of using a specific mitigation strategy or group of strategies is realistic. As 174 

the model is bound to empirical data it may therefore only be representative of the locations where experiments were 175 

conducted. In such cases the user can input their own estimates of the cost of mitigation strategies.   176 

 177 

CONCLUSIONS 178 
 179 

Analysis of outputs from the beta version suggest that variation in contaminant (e.g. N and P) losses can be predicted 180 

(R2 > 0.77; P<0.001) by MitAgatorTM at the block and farm scale, with less certainty at the catchment scale and at higher 181 

rainfall rates. An example sensitivity analysis indicated that for P the most sensitive factors, and therefore those that 182 

should have the best quality data to ensure accurate outputs, were associated with hydrology, followed by soil 183 

characteristics and finally P inputs. The intent is that MitAgatorTM can act as part of a package of measures to assist 184 

farmers to minimize the cost of complying with water quality standards being developed as part of the National Policy 185 

Statement on Freshwater Management in New Zealand (MfE, 2014). 186 

 187 
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