The control of any infectious disease of livestock is made more difficult by the presence of a wildlife reservoir, as the reservoir is often poorly observed and difficult to manage. This problem is particularly acute for bovine tuberculosis (bTB) because the long duration of infection and low levels of infectiousness make tracing the sources of infection difficult. For over 30 years, the process of contact tracing has been aided by the exploitation of molecular markers in the pathogen, but this has largely only been capable of characterising broad associations between large communities of similar types. However, the recent advent of mass high-throughput 'whole-genome' sequencing (WGS) has revolutionised forensic epidemiology for other diseases, and now it has the potential to do so for bTB. In this review, the authors consider the historical context of WGS use and look at what prior molecular techniques have already achieved. They outline the key approaches to interpreting WGS data and consider both the role of advanced analytical techniques that exploit the evolutionary and epidemiological properties of the system and the problems associated with quantifying the role of hidden reservoirs of disease. Finally, they consider the particular difficulties associated with developing this technology for routine diagnostics and its potential for mass use.
Kao, R. R., Price-Carter, M., & Robbe-Austerman, S. (2016). Use of genomics to track bovine tuberculosis transmission. Revue Scientifique et Technique, 35(1), 241-258. doi: 10.20506/rst.35.1.2430