File(s) not publicly available

Porcine colonoids and enteroids keep the memory of their origin during regeneration

journal contribution
posted on 2023-05-03, 21:42 authored by Alicia BarnettAlicia Barnett, Jane MullaneyJane Mullaney, Charlotte Hendriks, Lisa Le Borgne, Warren McNabb, Nicole Roy
The development of alternative in vitro culture methods has increased in the last decade as three-dimensional organoids of various tissues, including those of the small and large intestines. Due to their multicellular composition, organoids offer advantages over traditionally used immortalized or primary cell lines. However, organoids must be accurate models of their tissues of origin. This study compared gene expression profiles with respect to markers of specific cell-types (stem-cells, enterocytes, goblet and enteroendocrine cells) and barrier maturation (tight junctions) of colonoid and enteroid cultures with their tissues of origin, and colonoids with enteroids. Colonoids derived from three healthy pigs formed multi-lobed structures with a monolayer of cells similar to the crypt structures in colonic tissue. Colonoid and enteroid gene expression signatures were more similar to those found for the tissues of their origin than to each other. However, relative to their derived tissues, organoids had increased gene expression levels of stem-cell markers Sox9 and Lgr5 encoding Sex determining region Y-box 9 and leucine-rich repeat-containing G-protein coupled rector 5, respectively. In contrast, expression levels of Occl and Zo1 encoding occludin and zonula occludens 1 respectively, were decreased. Expression levels of the cell lineage markers Atoh1, Cga and Muc2 encoding atonal homolog 1, chromogranin A and mucin 2 respectively, were decreased in colonoids, while Sglt1 and Apn encoding sodium-glucose transporter 1 and aminopeptidase A respectively, were decreased in enteroids. These results indicate colonoid and enteroid cultures were predominantly comprised of undifferentiated cell-types with decreased barrier maturation relative to their tissues of origin.


Rights statement

Copyright © 2021, American Journal of Physiology-Cell Physiology


  • English

Does this contain Māori information or data?

  • No


Royal Society of Chemistry

Journal title

American Journal of Physiology. Cell physiology




Barnett, A. M., Mullaney, J. A., Hendriks, C., Le Borgne, L., McNabb, W. C., & Roy, N. (2021). Porcine colonoids and enteroids keep the memory of their origin during regeneration. American Journal of Physiology. Cell Physiology, 320(5), C794-C805. doi:10.1152/ajpcell.00420.2020

Job code


Usage metrics


    Ref. manager