AgResearch
Browse

Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) are related to the digestion of protein and energy in dogs

Download (3.19 MB)
journal contribution
posted on 2023-05-03, 18:02 authored by Emma Bermingham, Paul MacleanPaul Maclean, David Thomas, Nick Cave, Wayne Young
Background Much of the recent research in companion animal nutrition has focussed on understanding the role of diet on faecal microbiota composition. To date, diet-induced changes in faecal microbiota observed in humans and rodents have been extrapolated to pets in spite of their very different dietary and metabolic requirements. This lack of direct evidence means that the mechanisms by which microbiota influences health in dogs are poorly understood. We hypothesised that changes in faecal microbiota correlate with physiological parameters including apparent macronutrient digestibility. Methods Fifteen adult dogs were assigned to two diet groups, exclusively fed either a premium kibbled diet (kibble; K; n = 8) or a raw red meat diet (meat; M; n = 7) for nine weeks. Apparent digestibility of macronutrients (protein, fat, gross energy and dry matter), faecal weight, faecal health scores, faecal VFA concentrations and faecal microbial composition were determined. Datasets were integrated using mixOmics in R. Results Faecal weight and VFA levels were lower and the apparent digestibility of protein and energy were higher in dogs on the meat diet. Diet significantly affected 27 microbial families and 53 genera in the faeces. In particular, the abundances of Bacteriodes, Prevotella, Peptostreptococcus and Faecalibacterium were lower in dogs fed the meat diet, whereas Fusobacterium, Lactobacillus and Clostridium were all more abundant. Discussion Our results show clear associations of specific microbial taxa with diet composition. For example, Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae were highly correlated to parameters such as protein and fat digestibility in the dog. By understanding the relationship between faecal microbiota and physiological parameters we will gain better insights into the effects of diet on the nutrition of our pets.

History

Rights statement

©2017 Bermingham et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

Language

  • English

Does this contain Māori information or data?

  • No

Publisher

PeerJ Inc.

Journal title

PeerJ

ISSN

2167-8359

Citation

Bermingham, E. N., Maclean, P., Thomas, D. G., Cave, N. J., & Young, W. (2017). Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) are related to the digestion of protein and energy in dogs. PeerJ, 5, e3019. doi:10.7717/peerj.3019

Funder

Ministry of Business Innovation & Employment

Contract number

A22257

Job code

11402

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC