File(s) not publicly available

Exercise recovery increases skeletal muscle H2O2 emission and mitochondrial respiratory capacity following two-weeks of limb immobilization

journal contribution
posted on 2023-05-03, 19:19 authored by Chantal Pileggi, Christopher Hedges, Randall D'Souza, Brenan Durainayagam, James Markworth, Anthony Hickey, Cameron Mitchell, David Cameron-Smith
Extended periods of skeletal muscle disuse result in muscle atrophy. Following limb immobilization, increased mitochondrial reactive oxygen species (ROS) production may contribute to atrophy through increases in skeletal muscle protein degradation. However, the effect of skeletal muscle disuse on mitochondrial ROS production remains unclear. This study investigated the effect of immobilization, followed by two subsequent periods of restored physical activity, on mitochondrial H2O2 emissions in adult male skeletal muscle. Middle-aged men (n = 30, 49.7 ± 3.84 y) completed two weeks of unilateral lower-limb immobilization, followed by two weeks of baseline-matched activity, consisting of 10,000 steps a day, then completed two weeks of three times weekly supervised resistance training. Vastus lateralis biopsies were taken at baseline, post-immobilization, post-ambulatory recovery, and post-resistance-training. High-resolution respirometry was used simultaneously with fluorometry to determine mitochondrial respiration and hydrogen peroxide (H2O2) production in permeabilized muscle fibres. Mitochondrial H2O2 emission with complex I and II substrates, in the absence of ADP, was greater following immobilization, however, there was no effect on mitochondrial respiration. Both ambulatory recovery and resistance training, following the period of immobilization, increased in mitochondrial H2O2 emissions. These data demonstrated that 2 weeks of immobilization increases mitochondrial H2O2 emissions, but subsequent retraining periods of ambulatory recovery and resistance training also led to in robust increases in mitochondrial H2O2 emissions in skeletal muscle.


Rights statement

© 2018 Elsevier Inc. All rights reserved.


  • English

Does this contain Māori information or data?

  • No



Journal title

Free Radical Biology and Medicine




Pileggi, C. A., Hedges, C. P., D’Souza, R. F., Durainayagam, B. R., Markworth, J. F., Hickey, A. J. R., … Cameron-Smith, D. (2018). Exercise recovery increases skeletal muscle H2O2 emission and mitochondrial respiratory capacity following two-weeks of limb immobilization. Free Radical Biology and Medicine, 124, 241–248. doi:10.1016/j.freeradbiomed.2018.06.012

Contract number


Usage metrics


    Ref. manager