Background: The nutrition of calves from birth until weaning is predominantly from liquid (milk or milk-based) feeds. Liquid feed allowances are often restricted during artificial rearing to accelerate the development of the rumen by promoting solid feed intake. Liquid feeds bypass the rumen and are digested in the lower digestive tract, however, the influence of different types of milk feeds, and their allowances, on the calf hindgut microbiota is not well understood. In this study, faecal samples from 199 calves raised on three different allowances of milk replacer: 10% of initial bodyweight (LA), 20% of initial bodyweight (HA), and ad libitum (ADLIB), were collected just prior to weaning. Bacterial community structures and fermentation products were analysed, and their relationships with calf growth and health parameters were examined to identify potential interactions between diet, gut microbiota and calf performance.
Results: Differences in the total concentrations of short-chain fatty acids were not observed, but higher milk replacer allowances increased the concentrations of branched short-chain fatty acids and decreased acetate to propionate ratios. The bacterial communities were dominated by Ruminococcaceae, Lachnospiraceae and Bacteroides, and the bacterial diversity of the ADLIB diet group was greater than that of the other diet groups. Faecalibacterium was over three times more abundant in the ADLIB compared to the LA group, and its abundance correlated strongly with girth and body weight gains. Milk replacer intake correlated strongly with Peptococcus and Blautia, which also correlated with body weight gain. Bifidobacterium averaged less than 1% abundance, however its levels, and those of Clostridium sensu stricto 1, correlated strongly with initial serum protein levels, which are an indicator of colostrum intake and passive transfer of immunoglobulins in early life.
Conclusions: Higher milk replacer intakes in calves increased hindgut bacterial diversity and resulted in bacterial communities and short chain fatty acid profiles associated with greater protein fermentation. Increased abundances of beneficial bacteria such as Faecalibacterium, were also observed, which may contribute to development and growth. Moreover, correlations between microbial taxa and initial serum protein levels suggest that colostrum intake in the first days of life may influence microbiota composition at pre-weaning.
Kumar, S., Khan, M. A., Beijer, E., Liu, J., Lowe, K. K., Young, W., … Moon, C. D. (2021). Effect of milk replacer allowance on calf faecal bacterial community profiles and fermentation. Animal Microbiome, 3, 27. doi:10.1186/s42523-021-00088-2