Adaptation of intestinal fermentation over time in the growing pig is influenced by the amount of kiwi fruit consumed
journal contribution
posted on 2023-05-03, 17:20authored byCarlos MontoyaCarlos Montoya, Sharon Henare, Peter Zhu, Shane Rutherfurd, Paul Moughan
The effect of kiwi fruit at two dietary levels on the adaptation of intestinal fermentation over time in the growing pig was studied. A semi-synthetic fibre-free diet and two semi-synthetic diets containing kiwi fruit as a model fibre source (133 or 266 g/kg (DM basis); 28 or 48 g fibre/kg) were formulated and the diets contained titanium dioxide as an indigestible marker. A total of fourteen ileal cannulated pigs (41 kg body weight) were fed the fibre-free diet for 7 d followed by either the low or high kiwi fruit-containing diets (n 7/diet) for a further 44 d. Ileal digesta and faeces were collected at five times throughout the study. Ileal digesta were fermented (in vitro) with a standard pooled human faecal inoculum, while fresh pig faeces were used as inocula to ferment in vitro a standard purified fibre. Observations were normalised for diet DM intake using the marker. The 16S ribosomal RNA gene copy number of ileal and total faecal bacteria were high for the high-kiwi fruit level diet (P<0·05). The ileal bacteria tended to decrease over time (P<0·1), while the faecal bacteria increased (P<0·05), at the same rate for both diets. The amounts of crude protein and insoluble dietary fibre entering the hindgut changed over time similarly for both diets, whereas for starch it changed only for the low kiwi fruit-containing diet (P<0·05). Changes over time were also observed for the predicted hindgut valeric acid production and butyric acid absorption (P<0·05). In conclusion, adaptational changes over time of some characteristics of intestinal fermentation depended on the dietary level of kiwi fruit.
Montoya, C. A., Henare, S. J., Zhu, P., Rutherfurd, S. M., & Moughan, P. J. (2019). Adaptation of intestinal fermentation over time in the growing pig is influenced by the amount of kiwi fruit consumed. British Journal of Nutrition, 121(6), 601–614. doi:10.1017/S0007114518003574