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ABSTRACT 51 

The accuracy of genomic predictions can be used to assess the utility of dense marker 52 

genotypes for genetic improvement of beef efficiency traits. This study was designed to test 53 

the impact of genomic distance between training and validation populations, training 54 

population size, statistical methods and density of genetic markers on prediction accuracy for 55 

feed efficiency traits in multi-breed and crossbred beef cattle. A total of 6,794 beef cattle data 56 

collated from various projects and research herds across Canada were used. Illumina 57 

BovineSNP50 (50K) and imputed Axiom Genome-Wide BOS 1 Array (HD) genotypes were 58 

available for all animals. The traits studied were dry matter intake (DMI), average daily gain 59 

(ADG) and residual feed intake (RFI). Four validation groups of 150 animals each, including 60 

Angus (AN), Charolais (CH), Angus-Hereford crosses (ANHH), and a Charolais-based 61 

composite (TX) were created by considering the genomic distance between pairs of individuals 62 

in the validation groups. Each validation group had seven corresponding training groups of 63 

increasing sizes (n = 1000; 1999; 2999; 3999; 4999; 5998 and 6644), which also represent 64 

increasing average genomic distance between pairs of individuals in the training and 65 

validations groups. Prediction of genomic breeding values (GEBV) was carried out using 66 

genomic best linear unbiased prediction (GBLUP) and Bayesian method C (BayesC). The 67 

accuracy of genomic predictions was defined as the Pearson’s correlation between adjusted 68 

phenotype and GEBV (r), unless otherwise stated. Using 50K genotypes, the highest average 69 

r achieved in purebreds (AN, CH) was 0.41 for DMI, 0.34 for ADG and 0.35 for RFI, while in 70 

crossbreds (ANHH, TX) it was 0.38 for DMI, 0.21 for ADG and 0.25 for RFI. Similarly, when 71 

imputed HD genotypes were applied in purebreds (AN, CH), the highest average  r was 0.14 72 

for DMI, 0.15 for ADG and 0.14 for RFI, while in crossbreds (ANHH, TX) it was 0.38 for 73 

DMI, 0.22 for ADG, 0.24 for RFI. The r of GBLUP predictions were greatly reduced with 74 

increasing genomic average distance as compared to those from BayesC predictions. The 75 
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results indicate that 50K genotypes, used with BayesC, were more effective for predicting 76 

GEBV in purebred cattle. Imputed HD genotypes found utility when dealing with composites 77 

and crossbreds. Formulation of a fairly large training set for genomic predictions in beef cattle 78 

should consider the genomic distance between the training and target population. 79 

 80 

INTRODUCTION 81 

The availability of affordable high density genotyping services for cattle provides an 82 

opportunity for the application of genomic selection (GS) for genetic improvement of 83 

economically important traits in beef cattle. These genotypes can be used to produce genomic 84 

estimated breeding values (GEBV) for a group of selection candidates without phenotypes as 85 

proposed by Meuwissen et al. (2001). The accuracy of genomic predictions is the key to 86 

successful application of GS and largely depends on the marker-QTL linkage disequilibrium 87 

(LD) and the genetic relationship among animals in the training and validation groups (Habier 88 

et al., 2007). Because accuracy cannot be assessed in the population used for training the SNP 89 

effects, care is required in choosing an informative training population for beef cattle where 90 

many breeds and distantly related animals are used to produce commercial cattle. In addition, 91 

accuracy of GS can be greatly reduced in multi-breed and crossbred populations due to 92 

inconsistent LD across multiple populations (de Roos et al. 2009). The use of high density 93 

markers and large training sets was proposed by Goddard and Hayes (2007) as a way to 94 

improve accuracy of GS in crossbred populations. A low cost solution called genotype 95 

imputation (Howie et al., 2009; Sargolzaei et al., 2014) is currently available for increasing the 96 

density of markers. Apart from reports by Chen et al. (2013) and Khansefid et al. (2014), 97 

research into the accuracy of genomic predictions for feed efficiency using genotypes from the 98 

BovineSNP50 BeadChip (50K; Illumina Inc. San Diego, CA, USA) and the Axiom Genome-99 

Wide BOS 1 Array (HD; Affymetrix Inc., Santa Clara, CA) are limited in literature. The 100 
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objective of the present study was to test the impact of genomic distance between training and 101 

validation populations, size of reference population, statistical approaches and marker density 102 

on prediction accuracy for feed efficiency traits in multi-breed and crossbred beef cattle. 103 

 104 

MATERIALS AND METHODS 105 

All management and procedures involving live animals where applicable, conformed 106 

to the guidelines outlined in the Canadian Council on Animal Care (CCAC, 1993), otherwise, 107 

existing datasets from the various Canadian research herds was used. 108 

Animals and Phenotypic Records 109 

A total of 6,796 beef cattle data were collated from various projects and research herds 110 

across Canada, including 3,692 from the Phenomic Gap Project (PG1) based at Lacombe 111 

Research Centre (LRC), Lacombe, AB; 875 Angus (AN), 569 Charolais (CH) and 906 beef-112 

dairy hybrids (HYB) from the University of Alberta’s Roy Berg Kinsella Research Ranch 113 

(KRR), Kinsella, AB; and 754 multi-breed and crossbred cattle mainly Angus-based with 114 

various proportions of Simmental (SM), Piedmontese (PI), Gelbvieh (GV), CH and Limousin 115 

(LM) from the University of Guelph’s Elora Beef Cattle Research Station (ERS), Elora, ON. 116 

The PG1 animals which represent over 50% of the dataset included 1,225 Angus-Hereford 117 

(ANHH) and 353 Charolais-Red Angus (CHAR) crosses from LRC, 272 HYB from KRR, 118 

1,526 crossbreds from three commercial herds and 316 Hereford (HH) cattle from various seed 119 

stock producers. More details on each of these herds and datasets were reported by Chen et al. 120 

(2013), Lu et al. (2013), López-Campos et al. (2013) and Akanno et al. (2014a). In terms of 121 

breeds, the whole dataset consisted of 968 AN, 572 CH, 316 HH, 17 SM, 17 LM, 1,225 ANHH, 122 

484 ANSM, 353 CHAR, 1,105 TX (Beefbooster composite that are heavily influenced by CH 123 

with infusion of Holstein, Maine Anjou, and Chianina; http://www.beefbooster.com), 1,178 124 

HYB and 561 animals of other breed combinations. 125 
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Phenotypic records, including dry matter intake (DMI), average daily gain (ADG) and 126 

residual feed intake (RFI) were available for all of the 6,796 animals. Phenotype collection 127 

were described in details by Basarab et al. (2011), Chen et al. (2013), and Lu et al. (2013). 128 

Briefly, feed intake (FI) and body weight (BW) were collected in post-weaning performance 129 

tests. For the KRR animals, performance test were approximately 120 days with FI measured 130 

daily and BW recorded every other week. The PG1 animals had test periods varying between 131 

76 and 112 days, with FI measured daily, and BW recorded on two consecutive days at the 132 

beginning and the end of test, and around 28 day intervals during the test. The ERS animals 133 

had an average test length of 111 days with daily FI measurement and 28 day weight recording. 134 

Residual feed intake was the difference between observed DMI and expected DMI being 135 

modelled on ADG, BW0.75 and ultrasound backfat (BFT) measured at end of test. The data was 136 

collated and adjusted for variation among the datasets (Crowley et al., 2014). Briefly, animals 137 

were filtered out based on the following criteria: 1) missing observation of any of the traits or 138 

model effects of interest; 2) animals older than 450d at the start of test; 3) any record with 139 

greater than 3 standard deviations from the mean estimated within dataset of any or all of ADG, 140 

DMI, BW0.75 and BFT; and 4) animals belonging to a contemporary group (CG) with less than 141 

five individuals. The CG was defined as data source, herd, year, group, and pen. Feeding trials 142 

for ERS animals were included in their group. 143 

 Genotype data 144 

All animals with phenotypes were genotyped with the 50K beadchip version 1 or 2. 145 

Genotypes from the various Canadian research sources were corrected for any discrepancy in 146 

the strands and allele designation using guidelines provided by Illumina (2006) before merging 147 

into a single genotype file. For the 50K genotypes, quality control (QC) was carried out to 148 

remove SNPs if one of the following was true: SNP with minor allele frequency (MAF) < 0.01, 149 

call rate < 0.90, and heterozygosity excess > 0.15. A total of 42,610 SNPs passed the QC and 150 
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entered into subsequent analyses.  Animals with HD genotypes (n=4,522),  from different 151 

Canadian cattle breeds, included AN (469), CH (474), HH (476), Holstein (447), LM (461), 152 

SM (417), GV (417), Beefbooster composite (478), ERS crossbreds (504) and Alberta 153 

crossbreds (379) were used as multi-breed reference dataset for imputing from 50K to HD 154 

genotypes.  155 

The 6796 50K genotypes collated from various Canadian research herds were coded in 156 

two formats: Illumina A/B and FORWARD/FORWARD, while the Affymetrix HD genotypes 157 

were coded using +/+ format. Then, as a first step, all 50K genotypes were accordingly 158 

converted to the +/+ format prior to imputation based on the DNA strand designation and allele 159 

determination in each coding format.  160 

Single nucleotide polymorphisms in the HD chip that did not map to the Bos taurus 161 

UMD 3.1 reference assembly, SNPs located on sex chromosomes, and SNPs not present in the 162 

Run 4.0 of the 1,000 bull genomes project were excluded, resulting in 508,868 SNPs in the 163 

reference HD genotypes. The software FImpute v2.2 (Sargolzaei et al., 2014) was used for 164 

imputing the HD genotypes of all 6796 beef cattle, using default parameters and population-165 

based imputation. Quality control criteria applied to the HD genotypes were the same as 166 

previously described for 50K genotypes, leaving 468112 SNPs on 29 autosomes for subsequent 167 

analyses. 168 

Statistical Model and Analysis 169 

Two of the 6796 animals were removed from the dataset due to inconsistent pedigree 170 

information. The final number of animals used for this study was 6794. The first analysis was 171 

to investigate population stratification among the animals using a classical multidimensional 172 

scaling (MDS) approach and all 42,610 SNPs to obtain the first six dimensions of genetic 173 

dissimilarity among the animals (Purcell et al., 2007). The six dimensions of the MDS were 174 
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fitted as covariates in model [1] used to produce the adjusted ADG and DMI. Adjusted RFI 175 

was produced from model [1] without backfat as a covariate. 176 

𝑦𝑖𝑗𝑘𝑚 = µ + 𝛾1(𝑎𝑔𝑒𝑖) + 𝛾2(𝑏𝑓𝑖) + 𝑐𝑔𝑘 + ∑ 𝛽𝑗𝑏𝑗 +6
𝑗=1 𝑒𝑖𝑗𝑘𝑚  [1] 177 

where 𝑦𝑖𝑗𝑘𝑚 is the phenotype of animal; µ the overall mean; 𝛾1 and 𝛾2  the regression 178 

coefficients for fixed effects of age and backfat, respectively; cg the kth contemporary group 179 

that consisted of sex, herd-year, and data source; 𝛽𝑗 the linear regression coefficient of the jth 180 

dimension and bj the coordinate of the jth dimension; and eijkm the residual. The residual was 181 

used as adjusted phenotype to compute GEBV in both genomic best linear unbiased prediction 182 

(GBLUP) and BayesC approaches. In addition, model [1] was expanded into a three-trait multi-183 

variate model that included ADG, DMI, and RFI as response variables, and a random animal 184 

effect that uses pedigree information for estimating genetic parameters of studied traits. 185 

The GBLUP approach was applied to the following statistical mixed model,  186 

y = 1µ + Zu + e     [2]  187 

where y is the vector of the adjusted phenotype values from model [1], Z the incidence matrix 188 

for all animals with genotype, u the vector of additive effect of individual SNP, and e the vector 189 

of random error. The mixed model equation was: 190 

[
1𝑛

′ 1 1𝑛
′ 𝑍

𝑍′1𝑛 𝑍′𝑍 + 𝐺−1] [
�̂�
�̂�

] = [
1𝑛

′ 𝑦

𝑍′𝑦
]   [3]  191 

where G in equation [3] represents the genomic relationship matrix that follows the formula by 192 

VanRaden et al. (2009). Pedigree information was not used. Phenotypic data of validation 193 

animals were assumed unknown, and their GEBV were obtained by solving equation [3]. The 194 

GBLUP approach was implemented using the GEBV software by Sargolzaei et al. (2009).  195 

In the Bayesian approach, the fraction of loci with no effect, π, was estimated using 196 

method BayesCπ to be approximately 0.77, 0.85, and 0.95 for RFI, ADG and DMI, 197 

respectively, with the 50K genotypes, and 0.99 for the 3 traits with the HD genotypes. 198 
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Thereafter, method BayesC was used with corresponding π value to simultaneously estimate 199 

SNP effects across the entire genome using the following mixed model 200 

𝑦𝑖 = 𝜇 +  ∑ 𝑋𝑖𝑗𝑚𝑗 + 𝑒𝑖
𝑘
𝑗=1       [4] 201 

where yi represents the adjusted phenotype of individual i from model 1, Xij is the vector of 202 

indicator variables representing the genotypes of the jth SNP for individual i, mj is the random 203 

effect for jth SNP, k is the total number of SNPs, and 𝑒𝑖 ~ 𝑁(0, 𝜎𝑒
2)  is the random residual. The 204 

prior for mj depends on the variance 𝜎𝑚𝑗

2  and the prior probability π as follows 205 

𝑚𝑗|𝜋, 𝜎𝑚𝑗

2 = {
0           𝑔𝑖𝑣𝑒𝑛 𝜋,

~𝑁 (0, 𝜎𝑚𝑗

2 )  𝑔𝑖𝑣𝑒𝑛 (1 − 𝜋)
   [5]  206 

𝜎𝑚
2 |𝜐𝑚, 𝑆𝑚

2  ~ 𝜐𝑚𝑆𝑚
2 𝜒𝜐𝑚

−2  ,  207 

where 𝑆𝑚
2 =  

�̃�𝑚
2 (𝜐𝑚−2)

𝜐𝑚
  𝑎𝑛𝑑  �̃�𝑚

2 =  
�̃�𝑠

2

(1−𝜋) ∑ 2𝑝𝑗(1−𝑝𝑗)𝑘
𝑗=1

, with �̃�𝑠
2 being the genetic variance 208 

explained by all markers, 𝜐𝑚 the degree of freedom of 4 and 𝑝𝑗 the allele frequency of jth SNP. 209 

The BayesC method uses a common 𝜎𝑚
2  for all markers (Habier et al., 2011). Markov Chain 210 

Monte Carlo methods with 50,000 iterations were used to generate posterior mean estimates of 211 

SNP effects after discarding 5,000 iterations as burn-ins. The Bayesian analyses were carried 212 

out using software GenSel v4.58R of Fernando and Garrick (2013). 213 

Pearson’s correlation between adjusted phenotype and GEBV (r) was used to evaluate 214 

the accuracy of predictions for various reference and validation populations tested, unless 215 

otherwise stated. Realized accuracy (equivalent to 
𝑟

√𝑡𝑟𝑎𝑖𝑡 ℎ𝑒𝑟𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦
, (Hayes et al., 2010)) was 216 

used only to compare results from this study with documented findings.  217 

Training and Validation Scenarios Investigated 218 



10 
 

Genomic distance was computed for pairs of animals using Euclidean metric and the 219 

six MDS coordinates. Validation groups of 150 animals each were created for AN, CH, ANHH, 220 

and TX breed groups. Animals in each validation group were chosen to minimize genomic 221 

distance between pairs of animals in the group. This approach is based on our observation that 222 

a given group of prediction animals could be split into subsets of individuals that are 223 

genomically closely related and therefore might be best predicted by different groups of 224 

training individuals.  Each animal chosen for validation appeared in only one validation group. 225 

There were three validation groups for CH animals, and five groups for each of AN, ANHH, 226 

and TX breed groups. Once a validation group was formed, seven training groups of increasing 227 

sizes were created from the remaining 6644 animals. The first training group consisted of 1000 228 

animals, each of which had the shortest average genomic distance with animals in the validation 229 

group. The second training group included 1000 animals in the first training group, in addition 230 

to 999 animals chosen from the remaining individuals based on shortest average genomic 231 

distance with animals in the validation group. This process was repeated for training groups 3, 232 

4, 5, and 6. Training group 7 contained all 6644 animals.  233 

RESULTS 234 

Descriptive statistics and genetic parameters of studied traits 235 

Details on animal performance and feed efficiency traits are presented in Table 1, which 236 

was adopted from Crowley et al. (2014). For 6794 animals used in this study, phenotypic means 237 

(±SD) for ADG, DMI, and RFI were 1.45±0.39 kg/d, 9.23±1.59 kg/d and 0.00±0.63 kg/d, 238 

respectively. Heritability estimates (±SE), using the pedigree relationship matrix, were 239 

0.38±0.04, 0.48±0.04, and 0.38±0.04 for ADG, DMI and RFI, respectively, while the genetic 240 

correlations between ADG and DMI, ADG and RFI, DMI and RFI were 0.69, 0.01, and 0.56, 241 

respectively.  242 

Genomic distance between training and validation populations 243 
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Table 2 shows the average genomic distance between pairs of individuals in the training 244 

and validation groups. Within a given validation group, average genomic distance between 245 

pairs of individuals in the training and validation groups increases as individuals that are less 246 

related to the validation population are included in the training population. To assist with 247 

visualizing the genomic distance between training and validation animals, genomic distance 248 

was compared to the proportion of the genome being different between two individuals (Figure 249 

1). The genomes of two individuals for genotypes coded as 0, 1, and 2 was 100% different 250 

when genotype difference at every single locus was 2. Linear regression of proportion of 251 

genome difference on genomic distance, both based on the 50K genotypes, was carried out for 252 

each validation and their training groups and the result is embedded in Figure 1. The 253 

coefficients of determination (R2) for all validation groups ranged from 0.90 to 0.99, implying 254 

that most of the variations in the genome difference around the mean were explained by the 255 

genomic distance. The intercepts of the regression equation showed slightly greater genome 256 

difference between the crossbred validation group (ANHH and TX; 27.64 and 28.23) and their 257 

training groups than between the purebred validation groups (AN and CH; 26.14 and 27.22) 258 

and their training groups. However, the slopes of the regression equation for AN and CH 259 

(227.11 and 163.10, respectively) were larger than those for ANHH and TX (130.69 and 260 

100.46, respectively), indicating faster increases in genome difference as genomic distance 261 

increases in the AN and CH than in the ANHH and TX validation groups. This reflects the fact 262 

that the AN and CH animals very different genomically to the crossbred ones, therefore genome 263 

differences between AN, CH validations and their training groups increased rapidly as the 264 

training groups expanded to include the crossbred individuals.  265 

Average genomic distance between pairs of training and validation animals was also 266 

computed based on the imputed HD genotypes, and presented in Table 2. Apart from the 267 

relationship between genomic distance and number of animals in the training groups already 268 
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observed with the 50K genotypes, the average genomic distance appeared to be shortened when 269 

the imputed HD genotypes were used. Validation animals therefore appeared to be more 270 

closely related to individuals in training groups. 271 

Accuracy of genomic predictions using 50K and imputed HD 272 

The correlation between adjusted phenotype and GEBV (r) in AN, CH, ANHH, and 273 

TX validation groups across the studied traits using GBLUP and BayesC are presented in Table 274 

3 for 50K genotypes and Table 4 for imputed HD genotypes. On average, when using 50K and 275 

imputed HD genotypes, BayesC showed slightly greater r across the studied traits compared to 276 

GBLUP (Tables 3 and 4). Within a given trait and validation population for the 50K genotypes 277 

(Table 3), the r tended to decrease with increasing size of training population which represented 278 

an increasing average genomic distance between pairs of individuals in the training and 279 

validation groups (Table 2). The r decreased faster with increasing genomic distance when 280 

using the GBLUP method compared to BayesC, which tended to be more stable (Table 3). 281 

Figure 2 shows the relationship between r and genomic distance across the studied traits 282 

and validation groups. For each 0.0001 increment in genomic distance, r changed by 0.017, 283 

0.022, 0.023 and 0.049 in AN, CH, ANHH and TX validation groups, respectively, when using 284 

GBLUP method to predict RFI. While the correlation r for all traits in the AN group dropped 285 

consistently when more animals were added to the initial training group, this trend was not 286 

observed in the BayesC predictions for the CH animals. The correlation r for their predictions 287 

remained relatively stable as the training group increased in size, and also observed in BayesC 288 

predictions of RFI in the ANHH animals, as well as RFI and DMI in the TX animals. 289 

Nevertheless the correlation r of ADG, DMI predictions for the ANHH animals, as well as 290 

ADG prediction for the TX animals appeared to increase slightly when their training group size 291 

increased from 1000 to 3999 or 4999, and remain relatively stable onwards. In general the 292 

highest r were 0.35 for RFI, 0.34 for ADG and 0.41 for DMI, on average, while the highest r 293 
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in crossbred cattle (ANHH and TX) were 0.25 for RFI, 0.21 for ADG and 0.38 for DMI, on 294 

average (Table 3). When the imputed HD was used, the highest r was 0.14 for RFI, 0.15 for 295 

ADG and 0.14 for DMI in purebreds (AN and CH), on average, while the highest r in crossbred 296 

cattle (ANHH and TX) were 0.24 for RFI, 0.22 for ADG and 0.38 for DMI, on average (Table 297 

4). Crossbred validation groups (ANHH and TX) showed greater r across the studied traits and 298 

statistical methods, on average, than purebred validation groups (AN and CH).  299 

Because the accuracy of GS should be the correlation between GEBV and the true 300 

breeding value which is assumed unknown, Table 5 presents a realised accuracy computed for 301 

AN and TX validation populations across traits and for 50K genotypes. Using GBLUP gave 302 

realised accuracies in the range of 0.36 – 0.49 for RFI, 0.29 – 0.37 for ADG, and 0.51 – 0.63 303 

for DMI, while BayesC gave generally higher realised accuracies of 0.49 – 0.55 for RFI, 0.37 304 

– 0.43 for ADG, and 0.58 – 0.63 for DMI in the Angus validation population. Similarly, in the 305 

Beefbooster composite validation population, realised accuracies from GBLUP ranged from 306 

0.20 – 0.33 for RFI, 0.16 – 0.19 for ADG, and 0.30 – 0.49 for DMI, while BayesC realised 307 

accuracies ranged from 0.31 – 0.38 for RFI, 0.23 – 0.27 for ADG, and 0.45 – 0.54 for DMI. 308 

Table 5 also shows the regression coefficient in brackets for regressing adjusted phenotypes on 309 

GEBV across the various scenarios and methods studied. The coefficient for all traits is 310 

expected to be equal to one where values greater or lower than one reflects an under or over 311 

estimation of GEBV, respectively. The GBLUP predictions were all overestimated with levels 312 

of biasness going up with increasing size of the reference population, which coincides with 313 

increasing genomic distance between training and validation groups. On the contrary, the 314 

BayesC predictions were underestimated though not as severely as the GBLUP predictions 315 

were over overestimated. The degree of over-prediction with GBLUP was greatly reduced by 316 

replacing 50K genotypes with HD genotypes; however, this replacement slightly increased 317 

under-prediction with BayesC (Figure 3). 318 
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DISCUSSION 319 

This study applied a GS approach based on bovine 50K and imputed HD genotypes to 320 

determine the accuracy of GEBV for DMI, ADG, and RFI in a multi-breed and crossbred beef 321 

cattle validation population that was created by considering the genomic distance between pairs 322 

of individuals in the training and validation groups. The mean performance and estimated 323 

genetic parameters for the studied traits were typical of beef cattle in North America and were 324 

in agreement with previous reports (Arthur et al. 2001; Nkrumah et al. 2006; Berry and 325 

Crowley 2012).  326 

Genomic predictions were carried out using GBLUP and BayesC statistical methods.   327 

When comparing the results from these two methods, it is important to consider their 328 

fundamental differences in approach and assumptions. The GBLUP approach uses a genomic 329 

relationship matrix of which covariance between pairs of individuals was estimated and 330 

expected to be deviated from a numerator relationship matrix based on pedigree due to allele 331 

segregation at QTL (Goddard et al., 2011; Habier et al., 2013), and sampling error associated 332 

with genomic position (Goddard et al., 2011). Though the true position of a QTL is unknown, 333 

allele segregation at the QTL can be inferred by segregation of SNPs surrounding it, which 334 

depends on LD among the SNPs. This inherent LD is affected by 1) traits of interest which are 335 

generally assumed to be controlled by different number of QTL with various effect sizes 336 

(Shrimpton and Robertson, 1988; Hayes and Goddard, 2001); 2) population structure such that 337 

homogeneous populations (small effective population size, Ne) possess higher LD than 338 

admixed or crossbred populations (Meuwissen et al., 2002; Sargolzaei et al., 2008; de Roos et 339 

al., 2008; Lu et al., 2012); and 3) small physical distance between SNPs and QTL which ensures 340 

higher LD between them as observed in LD studies (for e.g, Dunning et al., 2000; Hayes et al., 341 

2003; Laido et al., 2014), that is, higher LD is achieved with higher SNP density. These three 342 

elements also contribute to GEBV predictions using a Bayesian approach.  343 
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We found an advantage in the accuracy of GEBV predicted for DMI, ADG and RFI 344 

using BayesC over GBLUP. This finding agrees in principle with reports by Habier et al. (2010) 345 

and Gunia et al. (2014), but disagrees with the results by Lee et al. (2014). BayesC detects QTL 346 

and estimates SNP effects with a small proportion of SNPs having large effects on traits (Habier 347 

et al., 2011). Because QTL detection is involved, LD between QTL and its surrounding SNPs 348 

becomes important and the BayesC method exploits this LD advantage (Habier et al., 2007; 349 

Habier et al., 2011). The SNPs surrounding large QTL, such as those for DMI on chromosome 350 

6 (Lu et al., 2013; Saatchi et al., 2014), have stronger LD with the QTL, and thus their effect 351 

is more accurately estimated than those SNPs around small QTL for RFI (Lu et al., 2013; 352 

Saatchi et al., 2014), therefore, this could be a reason why BayesC predicted GEBV for DMI 353 

much better than it did for RFI. On the contrary, in a GBLUP approach, traits are assumed to 354 

be controlled by an infinite number of genes, each with very small effect (Fisher, 1918), which 355 

could explain the slightly lower accuracy of GEBV for DMI and RFI. In addition, the 356 

coefficients of the genomic relationship matrix do not reflect genetic covariance between two 357 

individuals at a QTL in the case of no LD between the QTL and the surrounding SNPs (Habier 358 

et al., 2013) which may have contributed to lower prediction accuracy for RFI using the 359 

GBLUP method. The implication is that a prior knowledge of genetic architecture of traits 360 

being analysed may be more important for choosing the right statistical approach, although 361 

different approaches for different traits may be problematic for routine evaluations for a given 362 

situation. 363 

The ability to predict genomic breeding values within and between populations partly 364 

depends on the extent of LD in the population (Goddard et al., 2011; Habier et al., 2013). More 365 

extensive LD means more variation in genomic relationship, and thus, requires fewer SNP for 366 

the prediction of these relationships (Goddard et al., 2011).  The LD in a crossbred population 367 

extends over shorter ranges compared to purebred populations due to recombination of 368 
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chromosome segments. Therefore, variation in relationship is small, and requires a larger 369 

number of SNPs to predict these relationships accurately (Goddard et al., 2011). A larger 370 

number of SNPs is also needed to reduce the error caused by SNP positions being sampled 371 

across the genome (Goddard et al., 2011).  However, Su et al. (2012) reported no gain in 372 

prediction accuracy when using imputed 777K genotypes versus the 50K in Nordic Holstein 373 

and Red Dairy cattle. On the contrary, Gunia et al. (2014) reported a very slight reduction in 374 

GEBV accuracy when SNP density was increased from 50K to 777K, using a GBLUP 375 

approach, though little improvement in GEBV accuracy was observed when BayesC was 376 

applied in French Charolais. Our results showed a large reduction in r in the purebred validation 377 

group (AN and CH) when imputed HD genotypes were used for GBLUP and BayesC 378 

predictions. The HD genotypes in this study were inferred from the 50K genotypes, using a 379 

population imputation approach with a multi-breed and crossbred reference population. Table 380 

2 shows that the HD genotypes imputed in this study made genomic distance between pairs of 381 

individuals shorter than it appeared as estimated with the 50K genotypes. This might not have 382 

reflected true relationship among the animals, especially between the pure AN, CH and the 383 

crossbreds. Allele frequencies (p) at imputed loci in the AN and CH may have been suppressed 384 

by those from other breeds and crossbreds in the reference population, such that the scalar 385 

(2∑pi(1-pi) ) in VanRaden’s genomic relationship formula (VanRaden et al., 2009) applied in 386 

the GBLUP method may well accurately represent the crossbred animals, for instance, the 387 

ANHH and TX crossbreds, leading to improved prediction accuracy when using imputed HD 388 

genotypes in the crossbred validation groups (ANHH and TX). Similarly for the BayesC 389 

method, estimation of SNP effects in the training population may have been driven by the 390 

crossbred allele frequency leading to a reduction in prediction accuracy when using the imputed 391 

HD genotypes in purebred cattle (AN and CH), however, small improvement in r for crossbred 392 

cattle (ANHH and TX) were observed. Moghaddar et al. (2015) reported a somewhat similar 393 
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result for Merino sheep, where 50K genotypes were imputed from a 12K SNP panel using 394 

various reference groups. The researchers found that the 50K genotypes, which were imputed 395 

from a reference population of mixed crossbred Merino or non-Merino purebreds, gave lower 396 

prediction accuracy than the real 12K genotypes.  397 

The prediction accuracy of GEBV also depends among other factors on the size of the 398 

training dataset and the strength of genomic relationships between all pair-wise combinations 399 

of individuals in the training and validation groups (Goddard 2009; Daetwyler et al., 2008). 400 

The greater the size of the training set and the higher the level of genomic relationship among 401 

individuals across the training and validation groups, the more likely the GEBV accuracy can 402 

be improved. The present study expressed the degree of relationship between pairs of 403 

individuals in the training and validation group as genomic distance between them, which 404 

eroded as more animals unrelated to the validation group were added to the training group.  405 

This created some confounding between increasing size of the reference population and 406 

increasing genetic distance. The genomic distance as calculated in the present study is 407 

synonymous with genetic distance which measures the degree of genetic divergence between 408 

species or between populations within a species (Nei, 1987). Populations with many similar 409 

genes have small genetic distances which indicate that they are closely related and have a recent 410 

common ancestor. The reduction in r as training-validation genomic relationship decays or 411 

genomic distance increases has been documented (Habier et al., 2010; Akanno et al., 2014b; 412 

Ventura et al., 2014), and was observed for most of GBLUP predictions in the present study. 413 

The GBLUP prediction accuracy for RFI, for example, reduced faster than those for DMI as 414 

genomic distance increased. This supports the views of Clark et al. (2011) that traits controlled 415 

by a large number of genes with small effects are more sensitive to variation in genetic 416 

relationship between training and validation groups than traits controlled by large QTL. On the 417 

contrary, BayesC predictions across the studied traits showed a small reduction in prediction 418 
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accuracy as genomic distance increased and in some instance an improvement in r was 419 

observed (for e.g ANHH and TX validation groups). This could indicate that BayesC 420 

predictions are less sensitive and more robust to training-validation genomic distance than 421 

GBLUP predictions. 422 

Chen et al. (2013) used a group of 522 AN and 395 CH, which is a subset of the animals 423 

used in the present study, to predict GEBV for RFI in the AN animals, using BayesB approach 424 

with the 50K genotypes, and found that within-breed predictions for AN had the highest 425 

realised accuracy of 0.53. This accuracy is comparable to our highest realised accuracy of 0.55 426 

for AN  being trained by a group of 1000 animals, using the 50K genotypes and BayesC 427 

method. When Chen et al. (2013) combined both AN and CH to predict RFI of the AN animals, 428 

using the same set of genotypes and BayesB method, they observed a realised accuracy of 0.53 429 

for RFI prediction, which was the same as the realised accuracy for within AN prediction. In 430 

the present study, adding more animals to the initial training group made the realised accuracy 431 

drop slightly to 0.52 – 0.54, whereas using all 6644 animals to train the AN made the realised 432 

accuracy drop even further. Theoretically, an increase in number of training individuals should 433 

increase predictive ability (Hayes et al., 2009; Garrick 2011), especially where effective 434 

population size is large as in beef cattle. However, in this study, adding animals from various 435 

research populations to the reference coincided with adding animals that were less related, 436 

increasing the average genomic distance between animals in the training and validation groups. 437 

This could be a result particular to our dataset. The implication of this finding in beef cattle is 438 

that prediction accuracy does not depend only on having a large training population but also 439 

on including training individuals that are closely related to the validation or target population 440 

when 50K genotypes are used. This is not the case in dairy cattle where half-sib families are 441 

large and the phenotypes used are often sire proofs with high accuracy.  442 
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Additionally, the imputed HD genotypes showed a small improvement in prediction 443 

accuracy with increasing genomic distance/training size and demonstrated more usefulness in 444 

crossbreds (ANHH and TX) than in purebreds (AN and CH), while 50K genotypes showed 445 

greater prediction accuracy in purebreds (AN and CH) than in crossbreds (ANHH and TX), 446 

across the studied traits. This finding supports the expectation of Goddard and Hayes (2007) 447 

that high density markers and large training sets are required to improve prediction accuracy 448 

in crossbreds because high density markers will ensure that LD is consistent across multi-breed 449 

and crossbred populations. As noted earlier, in purebreds the LD between QTL and markers 450 

are likely to be conserved in larger distances so a lower marker density is sufficient to predict 451 

GEBVs with moderate accuracy. On the other hand, genomic prediction in crossbreds exploits 452 

inherent LD in parental breeds and new LD due to recent crosses, thus, higher density markers 453 

are required to exploit both sources of LD for GEBV prediction (Akanno et al. 2014b). 454 

Therefore, further investigation into the utility of higher SNP density for genomic prediction 455 

in crossbreds is warranted. 456 

CONCLUSION 457 

This study demonstrated the utility of the Illumina BovineSNP50 BeadChip and 458 

imputed Axiom Genome-Wide BOS 1 Array genotypes for genomic prediction of DMI, ADG 459 

and RFI in a beef cattle validation population that was created by considering the genomic 460 

distance between pairs of individuals in the training and validation groups. The results indicate 461 

that 50K genotypes, in conjunction with Bayesian methods was a more effective tool for 462 

predicting GEBV in purebreds. Imputed HD genotypes found utility when dealing with 463 

composite and crossbred populations. Moderate to high accuracy of genomic predictions were 464 

realised for DMI, ADG and RFI in purebred and crossbred beef cattle. In addition, formulation 465 

of a fairly large training population for estimating SNP effects in beef cattle should take into 466 

account the relationship between pairs of individuals in the training and target population. 467 
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Table 1. Least square means of performance and feed efficiency traits1 among different data 614 

sources2 615 

 Mean AN, CH HYB PG1 ERS SE3 

n4 - 1599 907 3881 930 - 

Start age (d) 299 312a 301b 297bc 284c 2.82 

DMI (kg/d) 9.22 9.31a 9.98b 8.72c 10.39d 0.07 

ADG (kg/d) 1.46 1.40a 1.62b 1.33c 1.96d 0.02 

BW (kg) 430 430a 454b 420c 457b 3.32 

BFAT (mm) 8.03 9.46a 6.24b 6.13b 14.66c 0.23 

RFI (kg/d) 0 0.10 -0.02 -0.02 -0.06 0.05 

This result is adopted from Crowley et al. (2014). 1DMI = average dry matter intake,              616 

ADG = average daily gain, BW = mid-test bodyweight, BFAT = final ultrasound backfat,       617 

RFI = residual feed intake; 2AN = Angus, CH = Charolais, HYB = beef-dairy hybrids,            618 

PG1 = Phenomic Gap Project, ERS = Elora Research Station; 3Pooled standard error; 4Total 619 

number of animals was 7317, of which 6794 were used in the present study. 620 

 621 

Table 2. Average genomic distance (×10-3) between a pair of individuals in the training and validation 

groups 

Validation  

group1 (n=150) 

Training group 

n = 1000 n = 1999 n = 2999 n = 3999 n = 4999 n = 5998 n = 6644 

AN 50K 0.63±0.53 2.27±1.80 3.77±2.63 5.50±3.81 7.36±5.08 9.45±6.63 11.60±9.45 

 HD 0.52±0.91 1.58±1.39 2.36±1.66 3.26±2.18 4.20±2.75 5.25±3.51 6.25±4.64 

CH 50K 1.94±1.99 4.51±2.97 6.28±3.53 7.94±4.21 9.59±5.04 11.50±6.39 13.00±7.57 

 HD 1.33±1.42 2.29±1.85 3.81±2.17 4.69±2.46 5.52±2.79 6.51±3.44 4.19±3.86 

ANHH 50K 2.85±0.65 3.71±1.02 4.40±1.29 4.96±1.49 5.57±1.81 6.58±2.93 7.69±4.42 

 HD 1.67±1.09 2.20±1.24 2.57±1.34 2.86±1.41 3.14±1.50 3.65±1.95 4.19±2.59 

TX 50K 1.01±0.40 2.15±1.26 3.15±1.77 4.02±1.77 4.86±2.16 6.13±2.58 7.12±3.72 

 HD 0.57±0.34 1.33±1.06 1.89±1.30 2.35±1.45 2.74±1.57 3.39±2.12 3.85±2.50 
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1AN = Angus; CH = Charolais; ANHH = Angus-Hereford crosses; TX = Beefbooster composite. 622 

Increasing size of training groups coincided with including individuals less related with validation 623 

animals. 624 

 625 

 626 

Table 3. Correlation between adjusted phenotype and GEBV for RFI, ADG and DMI using the 50K 

genotypes and two statistical methods1 

Validation Training RFI  ADG  DMI 

group2 size GBLUP BayesC  GBLUP BayesC  GBLUP BayesC 

AN 1000 0.31±0.02 0.35±0.05  0.24±0.10 0.27±0.11  0.44±0.04 0.44±0.03 

 1999 0.27±0.03 0.33±0.04  0.18±0.09 0.24±0.12  0.41±0.07 0.44±0.03 

 2999 0.29±0.06 0.34±0.03  0.19±0.08 0.23±0.12  0.39±0.06 0.43±0.04 

 3999 0.27±0.07 0.32±0.05  0.20±0.08 0.24±0.13  0.38±0.08 0.41±0.05 

 4999 0.25±0.08 0.31±0.05  0.21±0.08 0.25±0.13  0.38±0.09 0.41±0.06 

 5998 0.24±0.07 0.31±0.05  0.20±0.09 0.25±0.13  0.37±0.07 0.41±0.05 

 6644 0.23±0.07 0.31±0.05  0.20±0.08 0.24±0.13  0.36±0.07 0.40±0.06 

 Mean 0.26 0.32  0.20 0.24  0.39 0.41 

CH 1000 0.38±0.09 0.36±0.07  0.28±0.01 0.33±0.02  0.38±0.07 0.39±0.05 

 1999 0.36±0.09 0.35±0.07  0.30±0.03 0.35±0.03  0.36±0.06 0.39±0.05 

 2999 0.33±0.07 0.35±0.06  0.31±0.10 0.36±0.07  0.34±0.07 0.39±0.08 

 3999 0.27±0.14 0.34±0.09  0.29±0.11 0.35±0.06  0.29±0.11 0.40±0.07 

 4999 0.24±0.18 0.34±0.11  0.28±0.07 0.36±0.04  0.27±0.11 0.40±0.08 

 5998 0.25±0.14 0.36±0.11  0.24±0.08 0.35±0.03  0.25±0.10 0.39±0.08 

 6644 0.25±0.13 0.37±0.11  0.24±0.09 0.33±0.04  0.24±0.10 0.40±0.08 

 Mean 0.29 0.35  0.27 0.34  0.30 0.39 

ANHH 1000 0.20±0.12 0.21±0.13  0.15±0.06 0.20±0.09  0.23±0.14 0.27±0.10 

 1999 0.15±0.11 0.22±0.10  0.15±0.10 0.20±0.09  0.18±0.11 0.26±0.08 

 2999 0.14±0.10 0.21±0.10  0.14±0.10 0.21±0.09  0.21±0.11 0.27±0.10 

 3999 0.15±0.10 0.20±0.10  0.14±0.09 0.21±0.08  0.23±0.09 0.31±0.10 

 4999 0.15±0.10 0.21±0.10  0.14±0.08 0.23±0.08  0.23±0.09 0.32±0.09 

 5998 0.14±0.09 0.20±0.09  0.14±0.07 0.24±0.07  0.25±0.06 0.32±0.08 

 6644 0.12±0.09 0.19±0.09  0.14±0.06 0.23±0.08  0.23±0.06 0.31±0.08 

 Mean 0.15 0.20  0.14 0.21  0.22 0.29 

TX 1000 0.21±0.09 0.27±0.11  0.12±0.05 0.11±0.05  0.35±0.07 0.39±0.06 

 1999 0.18±0.09 0.26±0.14  0.12±0.05 0.16±0.05  0.32±0.07 0.38±0.06 

 2999 0.17±0.12 0.25±0.15  0.12±0.06 0.18±0.08  0.30±0.07 0.39±0.06 

 3999 0.17±0.11 0.26±0.13  0.12±0.07 0.19±0.08  0.28±0.07 0.40±0.06 

 4999 0.16±0.11 0.26±0.12  0.10±0.08 0.20±0.09  0.23±0.04 0.39±0.06 

 5998 0.14±0.09 0.24±0.12  0.11±0.10 0.21±0.10  0.23±0.06 0.39±0.07 

 6644 0.13±0.08 0.24±0.12  0.11±0.09 0.20±0.11  0.21±0.08 0.39±0.07 

 Mean 0.16 0.25  0.11 0.17  0.27 0.38 
1Within a given validation group, increasing training size represents increasing genomic distance between 

pairs of individuals in the training and validation groups 
2AN = Angus; CH = Charolais; ANHH = Angus-Hereford crosses; TX = Beefbooster composite 
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Table 4. Correlation between adjusted phenotype and GEBV for RFI, ADG and DMI using the HD genotypes 

and two statistical methods1 

Validation Training RFI  ADG  DMI 

group2 size GBLUP BayesC  GBLUP BayesC  GBLUP BayesC 

AN 1000 0.10±0.06 0.08±0.05  0.07±0.10 0.01±0.09  0.15±0.07 0.10±0.01 

 1999 0.09±0.07 0.09±0.03  0.07±0.11 0.02±0.07  0.15±0.06 0.11±0.06 

 2999 0.08±0.07 0.09±0.04  0.07±0.12 0.04±0.10  0.13±0.08 0.12±0.06 

 3999 0.08±0.08 0.09±0.04  0.08±0.12 0.05±0.10  0.14±0.07 0.14±0.05 

 4999 0.10±0.07 0.11±0.05  0.08±0.12 0.05±0.10  0.16±0.07 0.16±0.05 

 5998 0.10±0.08 0.11±0.05  0.08±0.11 0.04±0.09  0.16±0.07 0.17±0.04 

 6644 0.10±0.07 0.12±0.05  0.09±0.11 0.04±0.08  0.17±0.06 0.18±0.04 

 Mean 0.09 0.10  0.07 0.04  0.14 0.14 

CH 1000 0.11±0.03 0.13±0.02  0.18±0.21 0.14±0.17  0.11±0.14 0.10±0.13 

 1999 0.10±0.07 0.13±0.05  0.18±0.20 0.12±0.14  0.10±0.15 -0.01±0.16 

 2999 0.09±0.05 0.14±0.05  0.17±0.18 0.13±0.13  0.08±0.13 0.08±0.12 

 3999 0.08±0.10 0.14±0.04  0.16±0.14 0.14±0.11  0.08±0.08 0.08±0.10 

 4999 0.11±0.10 0.15±0.05  0.15±0.15 0.13±0.12  0.11±0.08 0.09±0.10 

 5998 0.10±0.06 0.15±0.04  0.13±0.15 0.12±0.13  0.12±0.11 0.11±0.11 

 6644 0.12±0.06 0.17±0.07  0.13±0.15 0.13±0.12  0.13±0.11 0.12±0.12 

 Mean 0.10 0.14  0.15 0.13  0.10 0.08 

ANHH 1000 0.20±0.13 0.19±0.13  0.17±0.07 0.17±0.12  0.26±0.11 0.26±0.09 

 1999 0.15±0.09 0.21±0.10  0.16±0.10 0.20±0.09  0.23±0.09 0.27±0.09 

 2999 0.12±0.11 0.21±0.11  0.17±0.10 0.22±0.08  0.23±0.11 0.29±0.10 

 3999 0.13±0.09 0.20±0.10  0.16±0.11 0.21±0.07  0.25±0.10 0.31±0.11 

 4999 0.15±0.12 0.20±0.10  0.18±0.10 0.24±0.06  0.27±0.10 0.34±0.10 

 5998 0.16±0.10 0.20±0.10  0.16±0.08 0.24±0.07  0.28±0.11 0.33±0.10 

 6644 0.15±0.09 0.19±0.09  0.17±0.07 0.25±0.07  0.28±0.12 0.33±0.11 

 Mean 0.15 0.20  0.16 0.22  0.25 0.31 

TX 1000 0.23±0.09 0.25±0.11  0.15±0.05 0.10±0.04  0.38±0.09 0.38±0.07 

 1999 0.24±0.10 0.25±0.13  0.17±0.05 0.19±0.05  0.37±0.07 0.39±0.06 

 2999 0.22±0.10 0.24±0.13  0.16±0.08 0.22±0.07  0.35±0.08 0.38±0.05 

 3999 0.21±0.12 0.24±0.13  0.16±0.09 0.23±0.07  0.33±0.07 0.38±0.04 

 4999 0.22±0.10 0.24±0.12  0.17±0.09 0.24±0.08  0.32±0.06 0.38±0.05 

 5998 0.20±0.09 0.23±0.12  0.16±0.09 0.25±0.08  0.32±0.04 0.38±0.04 

 6644 0.19±0.07 0.23±0.11  0.17±0.09 0.25±0.09  0.32±0.05 0.38±0.05 

 Mean 0.21 0.24  0.16 0.21  0.34 0.38 
1Within a given validation group, increasing training size represents increasing genomic distance between 

pairs of individuals in the training and validation groups 
2AN = Angus; CH = Charolais; ANHH = Angus-Hereford crosses; TX = Beefbooster composite 
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Table 5. Accuracy1 of genomic estimated breeding values predicted with 50K panel for RFI, ADG and DMI using GBLUP 

and BayesC for Angus (AN) and Beefbooster composite (TX) validation groups. Regression coefficient of adjusted 

phenotype on predicted GEBV in brackets ()2 

  Training group3 

Traits Methods n = 1000 n = 1999 n = 2999 n = 3999 n = 4999 n = 5998 n = 6644 

AN        

RFI GBLUP 0.49 (0.47) 0.44 (0.38) 0.46 (0.38) 0.44 (0.34) 0.39 (0.30) 0.37 (0.28) 0.36 (0.26) 

 BayesC 0.55 (1.17) 0.52 (1.49) 0.54 (1.53) 0.52 (1.50) 0.50 (1.45) 0.49 (1.27) 0.50 (1.24) 

ADG GBLUP 0.37 (0.36) 0.29 (0.23) 0.30 (0.22) 0.31 (0.22) 0.33 (0.23) 0.31 (0.20) 0.31 (0.20) 

 BayesC 0.43 (1.90) 0.38 (1.26) 0.37 (0.98) 0.38 (0.93) 0.40 (0.86) 0.40 (0.85) 0.39 (0.86) 

DMI GBLUP 0.63 (0.67) 0.58 (0.50) 0.56 (0.46) 0.55 (0.44) 0.54 (0.42) 0.53 (0.40) 0.51 (0.38) 

 BayesC 0.63 (1.06) 0.62 (1.22) 0.61 (1.18) 0.59 (1.11) 0.58 (1.05) 0.58 (1.05) 0.58 (1.06) 

TX        

RFI GBLUP 0.33 (0.33) 0.29 (0.24) 0.27 (0.20) 0.27 (0.19) 0.26 (0.17) 0.21 (0.13) 0.20 (0.12) 

 BayesC 0.37 (1.32) 0.38 (1.26) 0.35 (1.55) 0.33 (1.40) 0.35 (1.29) 0.31 (1.15) 0.31 (1.11) 

ADG GBLUP 0.19 (0.23) 0.18 (0.19) 0.18 (0.17) 0.19 (0.17) 0.16 (0.13) 0.17 (0.13) 0.17 (0.12) 

 BayesC 0.23 (12.81) 0.26 (0.80) 0.26 (0.78) 0.25 (0.85) 0.26 (0.81) 0.26 (0.91) 0.27 (0.93) 

DMI GBLUP 0.49 (0.57) 0.45 (0.47) 0.43 (0.39) 0.39 (0.33) 0.32 (0.25) 0.32 (0.24) 0.30 (0.22) 

 BayesC 0.54 (1.18) 0.53 (1.07) 0.50 (1.17) 0.47 (1.20) 0.45 (1.13) 0.46 (1.15) 0.45 (1.15) 
1Accuracy is measured by correlation between adjusted phenotype and predicted genomic estimated breeding values in the 

validation group divided by the square root of estimated heritability. 2A coefficient of 1 is expected. 3Increasing training size 

represents increasing genomic distance between pairs of individuals in the training and validation groups 
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Figure 1. Genomic distance versus proportion of the genome being different between training and 

validation groups. AN = Angus; CH = Charolais; ANHH = Angus-Hereford cross; TX = Beefbooster 

composite 
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Figure 2. Relationship between correlations (r) and the genomic distance between pairs of 

individuals in the training and validation groups. AN = Angus; CH = Charolais; ANHH = Angus-

Hereford cross; TX = Beefbooster composite 
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Figure 3. Regression coefficients of adjusted DMI on DMI-GEBV when using 50K and 

imputed HD genotypes in Beefbooster composite 
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