A review of soil carbon change in New Zealand’s grazed grasslands
journal contribution
posted on 2023-05-03, 16:13authored byLouis Schipper, Paul Mudge, Miko Kirschbaum, Carolyn Hedley, Nancy Golubiewski, Simeon Smaill, Frank Kelliher
Soil organic matter is a potential sink of atmospheric carbon (C) and critical for maintaining soil quality. We reviewed New Zealand studies of soil C changes after conversion from woody vegetation long-term pasture. Soil C increased by about 13.7 t C ha−1 to a new steady state when forests were initially converted to pasture. In the last 3–4 decades, resampling of soil profiles demonstrated that under long-term pasture on flat land, soil C had subsequently declined for allophanic, gley and organic soils by 0.54, 0.32 and 2.9 t C ha−1 y−1, respectively, and soil C had not changed in the remainder of sampled soil orders. For the same time period, pasture soils on stable midslopes of hill country gained 0.6 t C ha−1 y−1. Whether these changes are ongoing is not known, except for the organic soils where losses will continue so long as they are drained. Phosphorus fertiliser application did not change C stocks. Irrigation decreased carbon by 7 t C ha−1. Carbon losses during pasture renewal ranged between 0.8 and 4.1 t C ha−1. Some evidence suggests tussock grasslands can gain C when fertilised and not overgrazed. When combined to the national scale, different data sets suggest either no change or a gain of C, but with large uncertainties. We highlight key land-use practices and soil orders that require further information of soil C stock changes and advocate for a better understanding of underpinning reasons for changes in soil C.
Schipper, L. A., Mudge, P. A., Kirschbaum, M. U. F., Hedley, C. B., Golubiewski, N. E., Smaill, S. J., & Kelliher, F. M. (2017). A review of soil carbon change in New Zealand’s grazed grasslands. New Zealand Journal of Agricultural Research, 60(2), 93-118. doi:10.1080/00288233.2017.1284134